Adaptive variability during walking is typical of child motor development. It has been reported that neurological disorders could affect this physiological phenomenon. The present work is designed to assess the adaptive variability of muscular recruitment during hemiplegic walking and to detect possible changes compared to control populations. In the attempt of limiting the complexity of computational procedure, the easy-to-measure coefficient of variation (CV) index is adopted to assess surface electromyography (sEMG) variability. The target population includes 34 Winters’ type I and II hemiplegic children (H-group). Two further healthy populations, 34 age-matched children (C-group) and 34 young adults (A-group), are involved as controls. Results show a significant decrease (p < 0.05) of mean CV for gastrocnemius lateralis (GL) in H-group compared to both C-group (15% reduction) and A-group (35% reduction). Reductions of mean CV are detected also for tibialis anterior (TA) in H-group compared to C-group (7% reduction, p > 0.05) and A-group (15% reduction, p < 0.05). Lower CVs indicate a decreased intra-subject variability of ankle-muscle activity compared to controls. Novel contribution of the study is twofold: (1) To propose a CV-based approach for an easy-to-compute assessment of sEMG variability in hemiplegic children, useful in different experimental environments and different clinical purposes; (2) to provide a quantitative assessment of the reduction of intra-subject variability of ankle-muscle activity in mild-hemiplegic children compared to controls (children and adults), suggesting that hemiplegic children present a limited capability of adapting their muscle recruitment to the different stimuli met during walking task. This finding could be very useful in deepening the knowledge of this neurological disorder.

Variability of muscular recruitment in hemiplegic walking assessed by EMG analysis / Di Nardo, F.; Spinsante, S.; Pagliuca, C.; Poli, A.; Strazza, A.; Agostini, V.; Knaflitz, M.; Fioretti, S.. - In: ELECTRONICS. - ISSN 2079-9292. - ELETTRONICO. - 9:10(2020), pp. 1-15. [10.3390/electronics9101572]

Variability of muscular recruitment in hemiplegic walking assessed by EMG analysis

Di Nardo F.
Writing – Original Draft Preparation
;
Spinsante S.
Methodology
;
Poli A.
Writing – Review & Editing
;
Strazza A.
Investigation
;
Fioretti S.
Supervision
2020-01-01

Abstract

Adaptive variability during walking is typical of child motor development. It has been reported that neurological disorders could affect this physiological phenomenon. The present work is designed to assess the adaptive variability of muscular recruitment during hemiplegic walking and to detect possible changes compared to control populations. In the attempt of limiting the complexity of computational procedure, the easy-to-measure coefficient of variation (CV) index is adopted to assess surface electromyography (sEMG) variability. The target population includes 34 Winters’ type I and II hemiplegic children (H-group). Two further healthy populations, 34 age-matched children (C-group) and 34 young adults (A-group), are involved as controls. Results show a significant decrease (p < 0.05) of mean CV for gastrocnemius lateralis (GL) in H-group compared to both C-group (15% reduction) and A-group (35% reduction). Reductions of mean CV are detected also for tibialis anterior (TA) in H-group compared to C-group (7% reduction, p > 0.05) and A-group (15% reduction, p < 0.05). Lower CVs indicate a decreased intra-subject variability of ankle-muscle activity compared to controls. Novel contribution of the study is twofold: (1) To propose a CV-based approach for an easy-to-compute assessment of sEMG variability in hemiplegic children, useful in different experimental environments and different clinical purposes; (2) to provide a quantitative assessment of the reduction of intra-subject variability of ankle-muscle activity in mild-hemiplegic children compared to controls (children and adults), suggesting that hemiplegic children present a limited capability of adapting their muscle recruitment to the different stimuli met during walking task. This finding could be very useful in deepening the knowledge of this neurological disorder.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/284183
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact