High-entropy alloys are known to show exceptionally high mechanical properties, both compression and tensile strength, and unique physical properties, such as their phase stability. These quite unusual properties are primarily due to the microstructure generated by mechanical alloying processes, such as conventional induction arc melting, powder metallurgy, or mechanical alloying. In the present study, an equiatomic CoCrFeNiNb high-entropy alloy was prepared by a sequence of conventional induction melting, powder metallurgy, and compaction via spark plasma sintering. The high-entropy alloys showed uniform sub-micrometer grain microstructure consisted by a mixture of an fcc solid solution strengthened by a hcp Laves phase and a third intergranular oxide phase. The as-cast high-entropy alloys showed an ultimate compression strength (UCS) of ∼1400 MPa, which after sintering and compaction at 1273 K increased up to ∼2400 MPa. Extensive transmission electron microscopy quantitative analyses were carried out to model the UCS. A quite good agreement between the microstructure-strengthening model and the experimental UCS was found.

Compression stress strengthening modelling of a ultrafine-grained equiatomic SPS CoCrFeNiNb high-entropy alloy

M. Cabibbo
Writing – Review & Editing
;
2020

Abstract

High-entropy alloys are known to show exceptionally high mechanical properties, both compression and tensile strength, and unique physical properties, such as their phase stability. These quite unusual properties are primarily due to the microstructure generated by mechanical alloying processes, such as conventional induction arc melting, powder metallurgy, or mechanical alloying. In the present study, an equiatomic CoCrFeNiNb high-entropy alloy was prepared by a sequence of conventional induction melting, powder metallurgy, and compaction via spark plasma sintering. The high-entropy alloys showed uniform sub-micrometer grain microstructure consisted by a mixture of an fcc solid solution strengthened by a hcp Laves phase and a third intergranular oxide phase. The as-cast high-entropy alloys showed an ultimate compression strength (UCS) of ∼1400 MPa, which after sintering and compaction at 1273 K increased up to ∼2400 MPa. Extensive transmission electron microscopy quantitative analyses were carried out to model the UCS. A quite good agreement between the microstructure-strengthening model and the experimental UCS was found.
File in questo prodotto:
File Dimensione Formato  
Proc IMechE Part C J Mech Eng Sci 0(0) (2020) 1–11.pdf

solo utenti autorizzati

Descrizione: Proc IMec Part C (2020)
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO-Accesso privato/ristretto
Dimensione 640.52 kB
Formato Adobe PDF
640.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/284093
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact