Dura mater reconstruction represents a crucial step of a neurosurgical procedure. Indeed, an inadequate dural closure may determine dreadful consequences that significantly increase morbidity and mortality rates. Different dural substitutes/sealants have been used with suboptimal results. To overcome this issue, we previously proposed a laser-based approach to the bonding of porcine dura mater by means of Indocyanine Green (ICG)-infused chitosan patches, evidencing the feasibility of the laser assisted procedure. In this work, we present the optimization of the laser bonding approach for dura mater reconstruction, both ex vivo (in porcine and human tissues) and in vivo (in adult and old rats). An 810 nm continuous-wave diode laser was used to weld the ICG stained chitosan patch to the dura. The ex vivo tests enabled to optimize the laser parameters, using histology and leak pressure evaluation to study the bonding effect. The in vivo tests were performed on 32 adult and 16 old Wistar rats: laser bonding was carried out in 16 adult and 8 old rats (treatment groups), while a non suturable collagen matrix was used for duroplasty in the remaining animals (control groups). Then, at the planned follow-ups (respectively, the adult rats at 20, 60, 90, or 120 days after surgery, and the old rats on postoperative day 20 or 90), four rats in the treatment and four rats in the control groups were anesthetized for fluid leakage pressure test of the duroplasty, as well as for obtaining specimens for standard histology and immunohistochemistry. The results of this study pointed out that the laser bonding procedure provides, both ex vivo and in vivo, an immediate dural closure without the need of any standard suturing, thus potentially reducing surgery times. In all the different models, the fluid leakage pressure values were always higher than the normal intracranial pressure. In addition, in the murine model, the laser bonding allowed to achieve fluid leakage pressure values statistically higher than those recorded with the collagen matrix as dural graft. No postoperative complication/neurological injury occurred in rats. The histological analysis evidenced a good adhesion between the chitosan patches and the dura mater, without a significant thermal effect. Chitosan patches effectively worked as biopolymeric scaffolds for dura mater regeneration, as evidenced by the histological analysis and the confocal microscopy. The laser bonding of dura mater was safely and effectively employed in old rats. Our data were in favor of the suggested age-related delay in the healing process. However, no significant functional differences were revealed in terms of fluid leakage pressure. Moreover, the maximum measured temperature after irradiation (<55°C) was, by far, well below the value reported in the previous studies on dural closure with laser tissue welding. Hence, the technique can be proposed as a safe and valid alternative to traditional procedures for dural closure, in particular when the conventional suture technique is risky and/or extremely difficult, i.e. when working through narrow and deep surgical corridors (e.g. key-hole or endoscopic approaches), in case of reoperation, or following radiotherapy.
La ricostruzione della dura madre rappresenta una delle ultime ma fondamentali fasi di un intervento neurochirurgico. Infatti, un’inadeguata chiusura della dura espone i pazienti a temibili complicanze che aumentano in modo significativo i tassi di morbidità e mortalità post-operatoria. Diversi sostituti/sigillanti durali sono utilizzati con risultati non sempre ottimali. Per risolvere tale problematica, il nostro gruppo ha precedentemente proposto, e verificato la fattibilità in un modello porcino, una saldatura laser della dura madre mediante patch di chitosan imbevuti con verde di indocianina. In questo lavoro, presentiamo l’ottimizzazione della suddetta tecnica di sutura durale, sia ex vivo (su dura madre di maiale ed umana) sia in vivo (in ratti adulti ed anziani). Un laser ad emissione continua (lunghezza d’onda 810 nm) è stato utilizzato per saldare patch di chitosan imbevuti con verde di indocianina alla dura madre. Test ex vivo hanno permesso di ottimizzare i parametri del laser, eseguendo una valutazione istologica e della pressione di tenuta per studiare la saldatura stessa. I test in vivo sono stati eseguiti su 32 ratti Wistar adulti e 16 anziani: la saldatura laser è stata effettuata in 16 ratti adulti e 8 anziani (gruppi di trattamento sperimentale), mentre una matrice collagene non suturabile è stata utilizzata per la duroplastica nei restanti animali (gruppi di controllo). Successivamente, ai follow-up pianificati (rispettivamente, i ratti adulti a 20, 60, 90, o 120 giorni dall’intervento chirurgico, e gli anziani il ventesimo o novantesimo giorno post-operatorio), 4 ratti nel gruppo di trattamento e 4 nel gruppo di controllo sono stati anestetizzati per eseguire test di tenuta della duroplastica, e per prelevare campioni per analisi istologica ed immunoistochimica. I risultati dello studio hanno indicato che la procedura di saldatura laser da noi proposta determina, sia ex vivo sia in vivo, un’immediata chiusura durale senza la necessità di aggiuntive suture convenzionali, potenzialmente riducendo quindi i tempi chirurgici. Nei differenti modelli, i valori della pressione di tenuta sono stati sempre più elevati della normale pressione intracranica. Inoltre, nel modello murino, la saldatura laser ha permesso di ottenere pressioni di tenuta statisticamente più elevate di quelle registrate con la matrice collagene. Nessuna complicanza, né deficit post-operatorio, è occorsa nei ratti. L’analisi istologica ha documentato una buona adesione tra i patch di chitosan e la dura madre, senza un significativo effetto termico. I patch di chitosan hanno efficacemente funzionato da scaffold biopolimerici per la rigenerazione della dura madre, come evidenziato dall’analisi istologica e dalla microscopia confocale. La saldatura laser della dura madre è stata eseguita in sicurezza e in modo efficace anche nei ratti anziani. I nostri dati sono in favore del presumibile ritardo età-dipendente nel processo di guarigione. Tuttavia, nessuna significativa differenza funzionale è stata rilevata in termini di pressione di tenuta. Inoltre, la massima temperatura registrata dopo l’irradiazione (<55°C) è, di gran lunga, inferiore alle temperature riportate nei precedenti studi di saldatura laser della dura madre. Quindi, la tecnica di saldatura laser da noi proposta può rappresentare un’alternativa sicura e valida alle tecniche tradizionali di chiusura durale, in particolare quando le tecniche di sutura convenzionali potrebbero essere rischiose e/o estremamente difficili, ad esempio quando si lavora in corridori chirurgici stretti e profondi (approcci key-hole o endoscopici endonasali), in caso di re-intervento, o in seguito a radioterapia.
Laser welding of dura mater by means of indocyanine green-infused chitosan patches / Colasanti, Roberto. - (2020 Oct 29).
Laser welding of dura mater by means of indocyanine green-infused chitosan patches
COLASANTI, ROBERTO
2020-10-29
Abstract
Dura mater reconstruction represents a crucial step of a neurosurgical procedure. Indeed, an inadequate dural closure may determine dreadful consequences that significantly increase morbidity and mortality rates. Different dural substitutes/sealants have been used with suboptimal results. To overcome this issue, we previously proposed a laser-based approach to the bonding of porcine dura mater by means of Indocyanine Green (ICG)-infused chitosan patches, evidencing the feasibility of the laser assisted procedure. In this work, we present the optimization of the laser bonding approach for dura mater reconstruction, both ex vivo (in porcine and human tissues) and in vivo (in adult and old rats). An 810 nm continuous-wave diode laser was used to weld the ICG stained chitosan patch to the dura. The ex vivo tests enabled to optimize the laser parameters, using histology and leak pressure evaluation to study the bonding effect. The in vivo tests were performed on 32 adult and 16 old Wistar rats: laser bonding was carried out in 16 adult and 8 old rats (treatment groups), while a non suturable collagen matrix was used for duroplasty in the remaining animals (control groups). Then, at the planned follow-ups (respectively, the adult rats at 20, 60, 90, or 120 days after surgery, and the old rats on postoperative day 20 or 90), four rats in the treatment and four rats in the control groups were anesthetized for fluid leakage pressure test of the duroplasty, as well as for obtaining specimens for standard histology and immunohistochemistry. The results of this study pointed out that the laser bonding procedure provides, both ex vivo and in vivo, an immediate dural closure without the need of any standard suturing, thus potentially reducing surgery times. In all the different models, the fluid leakage pressure values were always higher than the normal intracranial pressure. In addition, in the murine model, the laser bonding allowed to achieve fluid leakage pressure values statistically higher than those recorded with the collagen matrix as dural graft. No postoperative complication/neurological injury occurred in rats. The histological analysis evidenced a good adhesion between the chitosan patches and the dura mater, without a significant thermal effect. Chitosan patches effectively worked as biopolymeric scaffolds for dura mater regeneration, as evidenced by the histological analysis and the confocal microscopy. The laser bonding of dura mater was safely and effectively employed in old rats. Our data were in favor of the suggested age-related delay in the healing process. However, no significant functional differences were revealed in terms of fluid leakage pressure. Moreover, the maximum measured temperature after irradiation (<55°C) was, by far, well below the value reported in the previous studies on dural closure with laser tissue welding. Hence, the technique can be proposed as a safe and valid alternative to traditional procedures for dural closure, in particular when the conventional suture technique is risky and/or extremely difficult, i.e. when working through narrow and deep surgical corridors (e.g. key-hole or endoscopic approaches), in case of reoperation, or following radiotherapy.File | Dimensione | Formato | |
---|---|---|---|
tesi_Colasanti
Open Access dal 02/07/2022
Descrizione: Tesi_Colasanti
Tipologia:
Tesi di dottorato
Licenza d'uso:
Creative commons
Dimensione
2.1 MB
Formato
Unknown
|
2.1 MB | Unknown | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.