The acronym mTOR defines a family of serine-threonine protein kinase called mammalian target of rapamycin. The major role of these kinases in the cell is to merge extracellular instructions with information about cellular metabolic resources and to control the rate of anabolic and catabolic processes accordingly. In mammalian cells mTOR is present in two distinct heteromeric protein complexes commonly referred to as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), involved in the control of a wide variety of cellular processes. It has been recently reported that compounds acting modulating mTOR activity, beside mediating the well recognized processes exploited in the anticancer and immunosuppressant effects, are provided with neuroprotective properties. In fact, mTOR is involved in the mechanism of PI3K/Akt-induced upregulation of glutamate transporter 1, GLT1, that is linked to several neuronal disorders such as stroke, Alzheimer's disease, and amyotrophic lateral sclerosis. Furthermore, in adult brain mTOR is crucial for numerous physiological processes such as synaptic plasticity, learning, memory, and brain control of food uptake. Moreover, the activation of mTOR pathway is involved in neuronal development, dendrite development and spine morphogenesis. © 2011 Elsevier Ltd. All rights reserved.

Neuroprotective, immunosuppressant and antineoplastic properties of mTOR inhibitors: Current and emerging therapeutic options / Pignataro, G.; Capone, D.; Polichetti, G.; Vinciguerra, A.; Gentile, A.; Di Renzo, G.; Annunziato, L.. - In: CURRENT OPINION IN PHARMACOLOGY. - ISSN 1471-4892. - 11:4(2011), pp. 378-394. [10.1016/j.coph.2011.05.003]

Neuroprotective, immunosuppressant and antineoplastic properties of mTOR inhibitors: Current and emerging therapeutic options

Vinciguerra A.;
2011-01-01

Abstract

The acronym mTOR defines a family of serine-threonine protein kinase called mammalian target of rapamycin. The major role of these kinases in the cell is to merge extracellular instructions with information about cellular metabolic resources and to control the rate of anabolic and catabolic processes accordingly. In mammalian cells mTOR is present in two distinct heteromeric protein complexes commonly referred to as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), involved in the control of a wide variety of cellular processes. It has been recently reported that compounds acting modulating mTOR activity, beside mediating the well recognized processes exploited in the anticancer and immunosuppressant effects, are provided with neuroprotective properties. In fact, mTOR is involved in the mechanism of PI3K/Akt-induced upregulation of glutamate transporter 1, GLT1, that is linked to several neuronal disorders such as stroke, Alzheimer's disease, and amyotrophic lateral sclerosis. Furthermore, in adult brain mTOR is crucial for numerous physiological processes such as synaptic plasticity, learning, memory, and brain control of food uptake. Moreover, the activation of mTOR pathway is involved in neuronal development, dendrite development and spine morphogenesis. © 2011 Elsevier Ltd. All rights reserved.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/283125
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 76
social impact