In this work we study the following fractional scalar field equation (Formula Presented) where N ≥ 2, s ϵ (0, 1), (-Δ)s is the fractional Laplacian and the nonlinearity g ϵ C2 (ℝ) is such that g"(0) = 0. By using variational methods, we prove the existence of a positive solution which is spherically symmetric and decreasing in r = |x|.
Titolo: | Zero mass case for a fractional Berestycki-Lions-type problem |
Autori: | AMBROSIO, Vincenzo (Corresponding) |
Data di pubblicazione: | 2018 |
Rivista: | |
Abstract: | In this work we study the following fractional scalar field equation (Formula Presented) where N ≥ 2, s ϵ (0, 1), (-Δ)s is the fractional Laplacian and the nonlinearity g ϵ C2 (ℝ) is such that g"(0) = 0. By using variational methods, we prove the existence of a positive solution which is spherically symmetric and decreasing in r = |x|. |
Handle: | http://hdl.handle.net/11566/281347 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.