In this work we study the following fractional scalar field equation (Formula Presented) where N ≥ 2, s ϵ (0, 1), (-Δ)s is the fractional Laplacian and the nonlinearity g ϵ C2 (ℝ) is such that g"(0) = 0. By using variational methods, we prove the existence of a positive solution which is spherically symmetric and decreasing in r = |x|.

Zero mass case for a fractional Berestycki-Lions-type problem

Ambrosio V.
2018-01-01

Abstract

In this work we study the following fractional scalar field equation (Formula Presented) where N ≥ 2, s ϵ (0, 1), (-Δ)s is the fractional Laplacian and the nonlinearity g ϵ C2 (ℝ) is such that g"(0) = 0. By using variational methods, we prove the existence of a positive solution which is spherically symmetric and decreasing in r = |x|.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/281347
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact