The purpose of this paper is to study T-periodic solutions to { [(-Δx + m2)s - m2s]u = f(x; u) in (0; T)N u(x + Tei) = u(x) for all x Σ RN; i = 1; ... ;N (1) where s 2 (0; 1), N > 2s, T > 0, m > 0 and f(x; u) is a continuous function, T-periodic in x and satisfying a suitable growth assumption weaker than the Ambrosetti-Rabinowitz condition. The nonlocal operator (-Δx + m2)s can be realized as the Dirichlet to Neumann map for a degenerate elliptic problem posed on the half-cylinder ST = (0, T)N × (0;∞). By using a variant of the Linking Theorem, we show that the extended problem in ST admits a nontrivial solution v(x; ξ) which is T-periodic in x. Moreover, by a procedure of limit as m ! 0, we prove the existence of a nontrivial solution to (1) with m = 0.

Periodic solutions for a superlinear fractional problem without the Ambrosetti-Rabinowitz condition

Ambrosio V.
2017

Abstract

The purpose of this paper is to study T-periodic solutions to { [(-Δx + m2)s - m2s]u = f(x; u) in (0; T)N u(x + Tei) = u(x) for all x Σ RN; i = 1; ... ;N (1) where s 2 (0; 1), N > 2s, T > 0, m > 0 and f(x; u) is a continuous function, T-periodic in x and satisfying a suitable growth assumption weaker than the Ambrosetti-Rabinowitz condition. The nonlocal operator (-Δx + m2)s can be realized as the Dirichlet to Neumann map for a degenerate elliptic problem posed on the half-cylinder ST = (0, T)N × (0;∞). By using a variant of the Linking Theorem, we show that the extended problem in ST admits a nontrivial solution v(x; ξ) which is T-periodic in x. Moreover, by a procedure of limit as m ! 0, we prove the existence of a nontrivial solution to (1) with m = 0.
File in questo prodotto:
File Dimensione Formato  
Ambrosio_DCDS_A.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO-Accesso privato/ristretto
Dimensione 467.08 kB
Formato Adobe PDF
467.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/281342
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 13
social impact