Doxorubicin (DOX), is a very effective chemotherapeutic agent against cancer whose clinical use is limited by toxicity. Different strategies have been proposed to attenuate toxicity, including combined therapy with bioactive compounds. This review update mechanisms of action and toxicity of doxorubicin and the role of nutrients like vitamins (A, C, E), minerals (selenium) and n-3 polyunsaturated fatty acids. Protective activities against DOX toxicity in liver, kidney, skin, bone marrow, testicles or brain have been reported, but these have not been evaluated for all of the reviewed nutrients. In most cases oxidation-related effects were present either, by reducing ROS levels and/or increasing antioxidant defenses. Antiapoptotic and anti-inflammatory mechanisms are also commonly reported. In some cases, interferences with autophagy and calcium homeostasis also have shown to be affected. Notwithstanding, there is a wide variety in duration and doses of treatment tested for both, compounds and DOX, which make difficult to compare the results of the studies. In spite of the reduction of DOX cardiotoxicity in health models, DOX anti-cancer activity in cancer cell lines or xenograft models usually did not result compromised when this has been evaluated. Importantly, clinical studies are needed to confirm all the observed effects.

An update on the mechanisms related to cell death and toxicity of doxorubicin and the protective role of nutrients / Varela-Lopez, A.; Battino, M.; Navarro-Hortal, M. D.; Giampieri, F.; Forbes-Hernandez, T. Y.; Romero-Marquez, J. M.; Collado, R.; Quiles, J. L.. - In: FOOD AND CHEMICAL TOXICOLOGY. - ISSN 0278-6915. - ELETTRONICO. - 134:(2019), p. 110834. [10.1016/j.fct.2019.110834]

An update on the mechanisms related to cell death and toxicity of doxorubicin and the protective role of nutrients

Battino M.
Conceptualization
;
Giampieri F.
Formal Analysis
;
2019-01-01

Abstract

Doxorubicin (DOX), is a very effective chemotherapeutic agent against cancer whose clinical use is limited by toxicity. Different strategies have been proposed to attenuate toxicity, including combined therapy with bioactive compounds. This review update mechanisms of action and toxicity of doxorubicin and the role of nutrients like vitamins (A, C, E), minerals (selenium) and n-3 polyunsaturated fatty acids. Protective activities against DOX toxicity in liver, kidney, skin, bone marrow, testicles or brain have been reported, but these have not been evaluated for all of the reviewed nutrients. In most cases oxidation-related effects were present either, by reducing ROS levels and/or increasing antioxidant defenses. Antiapoptotic and anti-inflammatory mechanisms are also commonly reported. In some cases, interferences with autophagy and calcium homeostasis also have shown to be affected. Notwithstanding, there is a wide variety in duration and doses of treatment tested for both, compounds and DOX, which make difficult to compare the results of the studies. In spite of the reduction of DOX cardiotoxicity in health models, DOX anti-cancer activity in cancer cell lines or xenograft models usually did not result compromised when this has been evaluated. Importantly, clinical studies are needed to confirm all the observed effects.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/278783
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 63
social impact