The aim of this work was to assess the phytochemical composition and anticancer effects of Strawberry-tree honey (STH) on cellular proliferation, cell cycle and apoptosis in human colon adenocarcinoma (HCT-116) and metastatic (LoVo) cancer cells. Kaempferol and gallic acid were the major phenolic compounds. STH showed higher cytotoxic and anti-colonogenic effects in a time- and dose-dependent manner; it arrested cell cycle in S and G2/M and regulated cell cycle genes, such as cyclin D1, cyclin E, CDK2, CDK4, p21Cip, p27Kip and p-RB. STH treatment promoted apoptosis by modulating key genes (p53, caspase-3, c-PARP) as well as intrinsic (Bax/Bcl2, Cyto C and caspase-9) and extrinsic (Fas L and caspase-8) apoptotic factors. STH also caused endoplasmic reticulum stress by increasing ATF-6 and XBP-1 expressions, suppressed EGFR, HER2 and downstream markers (p-Akt and p-mTOR) and elevated p-p38MAPK and p-ERK1/2. In conclusion, STH have shown a chemo-preventive action on different colon cancer cell models.

Strawberry tree honey as a new potential functional food. Part 1: Strawberry tree honey reduces colon cancer cell proliferation and colony formation ability, inhibits cell cycle and promotes apoptosis by regulating EGFR and MAPKs signaling pathways

Afrin S.;Giampieri F.;Cianciosi D.;Ansary J.;Amici A.;Battino M.
2019-01-01

Abstract

The aim of this work was to assess the phytochemical composition and anticancer effects of Strawberry-tree honey (STH) on cellular proliferation, cell cycle and apoptosis in human colon adenocarcinoma (HCT-116) and metastatic (LoVo) cancer cells. Kaempferol and gallic acid were the major phenolic compounds. STH showed higher cytotoxic and anti-colonogenic effects in a time- and dose-dependent manner; it arrested cell cycle in S and G2/M and regulated cell cycle genes, such as cyclin D1, cyclin E, CDK2, CDK4, p21Cip, p27Kip and p-RB. STH treatment promoted apoptosis by modulating key genes (p53, caspase-3, c-PARP) as well as intrinsic (Bax/Bcl2, Cyto C and caspase-9) and extrinsic (Fas L and caspase-8) apoptotic factors. STH also caused endoplasmic reticulum stress by increasing ATF-6 and XBP-1 expressions, suppressed EGFR, HER2 and downstream markers (p-Akt and p-mTOR) and elevated p-p38MAPK and p-ERK1/2. In conclusion, STH have shown a chemo-preventive action on different colon cancer cell models.
File in questo prodotto:
File Dimensione Formato  
JFF_2019_Afrin.pdf

accesso aperto

Descrizione: Full lenght Article Submitted and accepted version
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.41 MB
Formato Adobe PDF
2.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/278744
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact