We discuss the existence of infinitely many periodic weak solutions for a subcritical nonlinear problem involving the fractional operator (− Δ + I)s on the torus TN. By using an abstract critical point result due to Clapp [14], we prove that, in spite of the presence of a perturbation h ∈ L2(TN) which breaks the symmetry of the problem under consideration, it is possible to nd an unbounded sequence of periodic (weak) solutions.

Infinitely Many Periodic Solutions for a Fractional Problem Under Perturbation / Ambrosio, V.. - In: JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS. - ISSN 2296-9020. - 2:1-2(2016), pp. 105-117. [10.1007/BF03377395]

Infinitely Many Periodic Solutions for a Fractional Problem Under Perturbation

Ambrosio V.
2016-01-01

Abstract

We discuss the existence of infinitely many periodic weak solutions for a subcritical nonlinear problem involving the fractional operator (− Δ + I)s on the torus TN. By using an abstract critical point result due to Clapp [14], we prove that, in spite of the presence of a perturbation h ∈ L2(TN) which breaks the symmetry of the problem under consideration, it is possible to nd an unbounded sequence of periodic (weak) solutions.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/278511
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact