The cancer stem cell theory states that a subset of tumor cells, termed cancer stem cells (CSCs), has the ability to self-renew and differentiate within the tumors. According to this theory, CSCs would be mainly responsible for tumor initiation, progression, resistance to therapy, recurrence, and metastasis. In this study, a culture system was setup to enrich CSCs from bladder cancer (T24), lung cancer (A549), colorectal cancer (CaCo-2), and osteosarcoma (MG63) cell lines, through sphere formation. Magnetic-activated cell sorting was also used to further increase CSC enrichment. Subsequently, molecular characterization of CSC-enriched cell populations and parental cells was carried out, by exploring the expression levels of stem markers and the enzyme nicotinamide N-methyltransferase (NNMT). Results obtained showed a significant upregulation of stem cell markers in CSC-enriched populations, obtained upon sphere formation, compared with parental counterparts. Moreover, NNMT expression levels were markedly increased in samples enriched with CSCs with respect to control cells. Considering the fundamental role played by CSCs in carcinogenesis, reported data strengthen the hypothesis that sustains a pivotal role of NNMT in cancer growth and metastasis. In addition, these findings could represent an important achievement for the development of new and effective anticancer therapies, based on CSC-associated targets.
Cancer stem cell enrichment is associated with enhancement of nicotinamide N-methyltransferase expression / Pozzi, V; Salvolini, E; Lucarini, G; Salvucci, A; Campagna, R; Rubini, C; Sartini, D; Emanuelli, M. - In: IUBMB LIFE. - ISSN 1521-6543. - STAMPA. - 72:7(2020), pp. 1415-1425. [10.1002/iub.2265]
Cancer stem cell enrichment is associated with enhancement of nicotinamide N-methyltransferase expression
Pozzi V;Salvolini E;Lucarini G;Salvucci A;Campagna R;Rubini C;Sartini D
Writing – Original Draft Preparation
;Emanuelli MConceptualization
2020-01-01
Abstract
The cancer stem cell theory states that a subset of tumor cells, termed cancer stem cells (CSCs), has the ability to self-renew and differentiate within the tumors. According to this theory, CSCs would be mainly responsible for tumor initiation, progression, resistance to therapy, recurrence, and metastasis. In this study, a culture system was setup to enrich CSCs from bladder cancer (T24), lung cancer (A549), colorectal cancer (CaCo-2), and osteosarcoma (MG63) cell lines, through sphere formation. Magnetic-activated cell sorting was also used to further increase CSC enrichment. Subsequently, molecular characterization of CSC-enriched cell populations and parental cells was carried out, by exploring the expression levels of stem markers and the enzyme nicotinamide N-methyltransferase (NNMT). Results obtained showed a significant upregulation of stem cell markers in CSC-enriched populations, obtained upon sphere formation, compared with parental counterparts. Moreover, NNMT expression levels were markedly increased in samples enriched with CSCs with respect to control cells. Considering the fundamental role played by CSCs in carcinogenesis, reported data strengthen the hypothesis that sustains a pivotal role of NNMT in cancer growth and metastasis. In addition, these findings could represent an important achievement for the development of new and effective anticancer therapies, based on CSC-associated targets.File | Dimensione | Formato | |
---|---|---|---|
tbmb rev.pdf
Open Access dal 11/03/2021
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Licenza specifica dell’editore
Dimensione
2.45 MB
Formato
Adobe PDF
|
2.45 MB | Adobe PDF | Visualizza/Apri |
IUBMB Life 2020.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
9.03 MB
Formato
Adobe PDF
|
9.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.