This paper examines the consequences of including distributed delays in an energy model. The stability behaviour of the resulting equilibrium for our dynamic system is analysed, including models with Dirac, weak and strong kernels. Applying the Hopf bifurcation theorem we determine conditions under which limit cycle motion is born in such models. The results indicate that distributed delays have an ambivalent impact on the dynamical behaviour of systems, either stabilizing or destabilizing them.

Stability and Hopf bifurcation analysis of a distributed time delay energy model for sustainable economic growth / Ferrara, Massimiliano; Gangemi, Mariangela; Guerrini, Luca; Pansera, BRUNO A.. - In: ATTI DELLA ACCADEMIA PELORITANA DEI PERICOLANTI, CLASSE DI SCIENZE FISICHE, MATEMATICHE E NATURALI. - ISSN 1825-1242. - 98:1(2020). [10.1478/AAPP.981A2]

Stability and Hopf bifurcation analysis of a distributed time delay energy model for sustainable economic growth

LUCA GUERRINI;
2020-01-01

Abstract

This paper examines the consequences of including distributed delays in an energy model. The stability behaviour of the resulting equilibrium for our dynamic system is analysed, including models with Dirac, weak and strong kernels. Applying the Hopf bifurcation theorem we determine conditions under which limit cycle motion is born in such models. The results indicate that distributed delays have an ambivalent impact on the dynamical behaviour of systems, either stabilizing or destabilizing them.
File in questo prodotto:
File Dimensione Formato  
2336-8565-1-PB.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 250.85 kB
Formato Adobe PDF
250.85 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/277526
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact