We deal with the existence of positive solutions for the following fractional Schrödinger equation: ε2s(−Δ)su + V (x)u = f(u) in RN , where ε > 0 is a parameter, s ∈ (0, 1), N ≥ 2, (−Δ)s is the fractional Laplacian operator, and V : RN → R is a positive continuous function. Under the assumptions that the nonlinearity f is either asymptotically linear or superlinear at infinity, we prove the existence of a family of positive solutions which concentrates at a local minimum of V as ε tends to zero.

Concentrating solutions for a class of nonlinear fractional Schrödinger equations in RN / Ambrosio, V.. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 35:5(2019), pp. 1367-1414. [10.4171/rmi/1086]

Concentrating solutions for a class of nonlinear fractional Schrödinger equations in RN

Ambrosio V.
2019-01-01

Abstract

We deal with the existence of positive solutions for the following fractional Schrödinger equation: ε2s(−Δ)su + V (x)u = f(u) in RN , where ε > 0 is a parameter, s ∈ (0, 1), N ≥ 2, (−Δ)s is the fractional Laplacian operator, and V : RN → R is a positive continuous function. Under the assumptions that the nonlinearity f is either asymptotically linear or superlinear at infinity, we prove the existence of a family of positive solutions which concentrates at a local minimum of V as ε tends to zero.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/276868
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact