Groundwater is the most used water resource around the world, but due to population growth and climate change the alluvial lowland aquifers are often polluted and over-exploited. Thus, more and more frequently water managers need to shift their attention to mountain regions to identify groundwater resources for drinking purposes. This study presents a monitoring and modelling approach that allowed to quantify the inflow from the "Montagna dei Fiori" fractured aquifer to the Castellano stream. Continuous monitoring of flow discharge and temperature during an entire hydrological year (2018-2019) at two monitoring stations along the stream allowed to discriminate between the baseflow (on average, 0.891 m3/s) and the run-off (on average, 0.148 m3/s) components. A hydrogeological basin-wide numerical flow model (using MODFLOW-2005) was set up using information from hydrogeological and geomechanical surveys. The model was calibrated using the daily baseflow observations made in the Castellano stream (R2 = 0.75). The calibrated model allowed to quantify groundwater/surface water interactions. After an automated sensitivity analysis (using MODFLOW-2000), the recharge was found to be the most uncertain parameter, followed by the hydraulic conductivity zonation. This methodology could be applied in other mountain regions where groundwater monitoring networks are usually lacking to improve water resources management.
Monitoring and Modelling Interactions between the Montagna dei Fiori Aquifer and the Castellano Stream (Central Apennines, Italy) / Tazioli, Alberto; Colombani, Nicolò; Palpacelli, Stefano; Mastrocicco, Micòl; Nanni, Torquato. - In: WATER. - ISSN 2073-4441. - ELETTRONICO. - 12:4(2020), p. 973. [10.3390/w12040973]
Monitoring and Modelling Interactions between the Montagna dei Fiori Aquifer and the Castellano Stream (Central Apennines, Italy)
Tazioli, AlbertoProject Administration
;Colombani, Nicolò;
2020-01-01
Abstract
Groundwater is the most used water resource around the world, but due to population growth and climate change the alluvial lowland aquifers are often polluted and over-exploited. Thus, more and more frequently water managers need to shift their attention to mountain regions to identify groundwater resources for drinking purposes. This study presents a monitoring and modelling approach that allowed to quantify the inflow from the "Montagna dei Fiori" fractured aquifer to the Castellano stream. Continuous monitoring of flow discharge and temperature during an entire hydrological year (2018-2019) at two monitoring stations along the stream allowed to discriminate between the baseflow (on average, 0.891 m3/s) and the run-off (on average, 0.148 m3/s) components. A hydrogeological basin-wide numerical flow model (using MODFLOW-2005) was set up using information from hydrogeological and geomechanical surveys. The model was calibrated using the daily baseflow observations made in the Castellano stream (R2 = 0.75). The calibrated model allowed to quantify groundwater/surface water interactions. After an automated sensitivity analysis (using MODFLOW-2000), the recharge was found to be the most uncertain parameter, followed by the hydraulic conductivity zonation. This methodology could be applied in other mountain regions where groundwater monitoring networks are usually lacking to improve water resources management.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.