Stiff jointed clays (SJC) belong to so-called structurally complex formations in which the macroscale features of the deposit, that is the pattern of discontinuities affecting the soil mass, influence its response at the scale of engineering works. Such peculiar response was largely recognized during the excavation works carried out for the construction of two new road segments in southern Italy, where several structurally conditioned instability processes were triggered during excavation works. These phenomena mainly involved the Plio-Pleistocene marine clayey formation outcropping along the East coast of the Calabria region, where it constitutes most of the hills interested by construction works. Under a geotechnical perspective, the SJC-formation exhibits good mechanical characteristics at the scale of samples but, if considered as a whole, its behaviour is governed by the presence of discontinuities along which strength is typically at residual. Building on the author’s experience of some exemplary failure events, this paper aims at defining possible design strategies to minimize the risk of adverse and unexpected instability phenomena during construction in structurally complex formations. Design strategies oriented at reducing and possibly avoiding stress releases in the zone of influence were found to be most effective at preventing failures or restoring safety after the occurrence of a failure event.
Design strategies to mitigate slope instabilities in structurally complex formations / Ruggeri, P.; Fruzzetti, V. M. E.; Scarpelli, G.. - In: GEOSCIENCES. - ISSN 2076-3263. - 10:2(2020). [10.3390/geosciences10020082]
Design strategies to mitigate slope instabilities in structurally complex formations
Ruggeri P.
;Fruzzetti V. M. E.
;Scarpelli G.
2020-01-01
Abstract
Stiff jointed clays (SJC) belong to so-called structurally complex formations in which the macroscale features of the deposit, that is the pattern of discontinuities affecting the soil mass, influence its response at the scale of engineering works. Such peculiar response was largely recognized during the excavation works carried out for the construction of two new road segments in southern Italy, where several structurally conditioned instability processes were triggered during excavation works. These phenomena mainly involved the Plio-Pleistocene marine clayey formation outcropping along the East coast of the Calabria region, where it constitutes most of the hills interested by construction works. Under a geotechnical perspective, the SJC-formation exhibits good mechanical characteristics at the scale of samples but, if considered as a whole, its behaviour is governed by the presence of discontinuities along which strength is typically at residual. Building on the author’s experience of some exemplary failure events, this paper aims at defining possible design strategies to minimize the risk of adverse and unexpected instability phenomena during construction in structurally complex formations. Design strategies oriented at reducing and possibly avoiding stress releases in the zone of influence were found to be most effective at preventing failures or restoring safety after the occurrence of a failure event.File | Dimensione | Formato | |
---|---|---|---|
geosciences-10-00082 (3).pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
4.89 MB
Formato
Adobe PDF
|
4.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.