A simple sleep monitoring measurement method is presented in this paper, based on a simple, non-invasive motion sensor, the Passive InfraRed (PIR) motion sensor. The easy measurement set-up proposed is presented and its performances are compared with the ones provided by a commercial, ballistocardiographic bed sensor, used as reference tool. Testing was conducted on 25 nocturnal acquisitions with a voluntary, healthy subject, using the PIR-based proposed method and the reference sensor, simultaneously. A dedicated algorithm was developed to correlate the bed sensor outputs with the PIR signal to extract sleep-related features: sleep latency (SL), sleep interruptions (INT), and time to wake (TTW). Such sleep parameters were automatically identified by the algorithm, and then correlated to the ones computed by the reference bed sensor. The identification of these sleep parameters allowed the computation of an important, global sleep quality parameter: the sleep efficiency (SE). It was calculated for each nocturnal acquisition and then correlated to the SE values provided by the reference sensor. Results show the correlation between the SE values monitored with the PIR and the bed sensor with a robust statistic confidence of 4.7% for the measurement of SE (coverage parameter k = 2), indicating the validity of the proposed, unobstructive approach, based on a simple, small, and low-cost sensor, for the assessment of important sleep-related parameters.

Experimental assessment of sleep-related parameters by passive infrared sensors: Measurement setup, feature extraction, and uncertainty analysis / Casaccia, S.; Braccili, E.; Scalise, L.; Revel, G. M.. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 19:17(2019), p. 3773. [10.3390/s19173773]

Experimental assessment of sleep-related parameters by passive infrared sensors: Measurement setup, feature extraction, and uncertainty analysis

Casaccia S.;Scalise L.;Revel G. M.
2019-01-01

Abstract

A simple sleep monitoring measurement method is presented in this paper, based on a simple, non-invasive motion sensor, the Passive InfraRed (PIR) motion sensor. The easy measurement set-up proposed is presented and its performances are compared with the ones provided by a commercial, ballistocardiographic bed sensor, used as reference tool. Testing was conducted on 25 nocturnal acquisitions with a voluntary, healthy subject, using the PIR-based proposed method and the reference sensor, simultaneously. A dedicated algorithm was developed to correlate the bed sensor outputs with the PIR signal to extract sleep-related features: sleep latency (SL), sleep interruptions (INT), and time to wake (TTW). Such sleep parameters were automatically identified by the algorithm, and then correlated to the ones computed by the reference bed sensor. The identification of these sleep parameters allowed the computation of an important, global sleep quality parameter: the sleep efficiency (SE). It was calculated for each nocturnal acquisition and then correlated to the SE values provided by the reference sensor. Results show the correlation between the SE values monitored with the PIR and the bed sensor with a robust statistic confidence of 4.7% for the measurement of SE (coverage parameter k = 2), indicating the validity of the proposed, unobstructive approach, based on a simple, small, and low-cost sensor, for the assessment of important sleep-related parameters.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/272554
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact