The synthesis of novel tunable carbon-based nanostructure represented a pivotal point to enhance the efficiency of existing photocatalysts and to extend their applicability to a wider number of sustainable processes. In this letter, we describe a transparent photocatalytic heterostructure by growing boron-doped carbon nanowalls (B-CNWs) on quartz, followed by a simple TiO2 sol-gel deposition. The effect on the thickness and boron-doping in the B-CNWs layer was studied, and the photocatalytic removal of nitrogen oxides (NOx) measured. Our results show that TiO2, in the anatase form, was uniformly deposited on the carbon nanowall layer. The underlying carbon nanowall layer played a double role in the heterostructure: it both affects the crystallinity of the TiO2 and promotes the separation of the photoexcited electron-holes, by increasing the number of contact points between the two layers. In summary, the combination of B-CNWs with TiO2 can enhance the separation of the electron–hole photogenerated charges, due to the peculiar CNWs maze-like structure.

Enhanced photocatalytic activity of transparent carbon nanowall/TiO2 heterostructures / Pierpaoli, Mattia; Lewkowicz, Aneta; Rycewicz, Michał; Szczodrowski, Karol; Letizia Ruello, Maria; Bogdanowicz, Robert. - In: MATERIALS LETTERS. - ISSN 0167-577X. - ELETTRONICO. - (2019), p. 127155. [10.1016/j.matlet.2019.127155]

Enhanced photocatalytic activity of transparent carbon nanowall/TiO2 heterostructures

Pierpaoli, Mattia
Investigation
;
Letizia Ruello, Maria
Writing – Review & Editing
;
2019-01-01

Abstract

The synthesis of novel tunable carbon-based nanostructure represented a pivotal point to enhance the efficiency of existing photocatalysts and to extend their applicability to a wider number of sustainable processes. In this letter, we describe a transparent photocatalytic heterostructure by growing boron-doped carbon nanowalls (B-CNWs) on quartz, followed by a simple TiO2 sol-gel deposition. The effect on the thickness and boron-doping in the B-CNWs layer was studied, and the photocatalytic removal of nitrogen oxides (NOx) measured. Our results show that TiO2, in the anatase form, was uniformly deposited on the carbon nanowall layer. The underlying carbon nanowall layer played a double role in the heterostructure: it both affects the crystallinity of the TiO2 and promotes the separation of the photoexcited electron-holes, by increasing the number of contact points between the two layers. In summary, the combination of B-CNWs with TiO2 can enhance the separation of the electron–hole photogenerated charges, due to the peculiar CNWs maze-like structure.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/272471
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact