This paper is devoted to the study of affne quaternionic manifolds and to a possible classication of all compact affne quaternionic curves and surfaces. It is established that on an affne quaternionic manifold there is one and only one affne quaternionic structure. A direct result, based on the celebrated Kodaira Theorem that studies compact complex manifolds in complex dimension 2, states that the only compact affne quaternionic curves are the quaternionic tori and the primary Hopf surface S^3 x S^1. As for compact affne quaternionic surfaces, we restrict to the complete ones: the study of their fundamental groups, together with the inspection of all nilpotent hypercomplex simply connected 8-dimensional Lie Groups, identies a path towards their classication.

On compact affine quaternionic curves and surfaces / Gentili, Graziano; Sarfatti, Giulia; Gori, Anna. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - STAMPA. - 31:1(2021), pp. 1073-1092. [10.1007/s12220-019-00311-2]

On compact affine quaternionic curves and surfaces

Giulia Sarfatti;
2021-01-01

Abstract

This paper is devoted to the study of affne quaternionic manifolds and to a possible classication of all compact affne quaternionic curves and surfaces. It is established that on an affne quaternionic manifold there is one and only one affne quaternionic structure. A direct result, based on the celebrated Kodaira Theorem that studies compact complex manifolds in complex dimension 2, states that the only compact affne quaternionic curves are the quaternionic tori and the primary Hopf surface S^3 x S^1. As for compact affne quaternionic surfaces, we restrict to the complete ones: the study of their fundamental groups, together with the inspection of all nilpotent hypercomplex simply connected 8-dimensional Lie Groups, identies a path towards their classication.
2021
File in questo prodotto:
File Dimensione Formato  
fundGGS-Rev.pdf

Open Access dal 10/11/2020

Descrizione: This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s12220-019-00311-2
Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Licenza specifica dell’editore
Dimensione 307.94 kB
Formato Adobe PDF
307.94 kB Adobe PDF Visualizza/Apri
s12220-019-00311-2.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 285.93 kB
Formato Adobe PDF
285.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/272350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact