Atrial Fibrillation (AF) is a common cardiac pathology and, due to its unpredictability, it sometimes remains not detected. Aim of this work is to present a new version of the already published eHealth system, that includes a new real-time Android application for AF detection and monitoring. The proposed eHealth system is composed of a commercial wearable sensor device (Bioharness 3.0 by Zephyr) for cardiac monitoring and a specially developed Android smartphone application. This application is able to real-time processing the raw data sensed from the wearable sensor, providing stress detection, calories consumption estimation, sinus arrhythmia detection, sinus rhythm classification, and apnea detection. As novelty, the new smartphone application also implemented a SVM-based algorithm designed to detect AF episodes by handling electrocardiogram and the heart-rate sequence of the subjects. The performance of the new SVM-based algorithm implemented in eHealth was tested on AF recordings and evaluated in term of sensitivity and specificity. The results show a sensitivity of 78% and a specificity of 66%, making this version of eHealth system suitable for real-time monitoring of AF events.

Real-Time Smart Monitoring System for Atrial Fibrillation Pathology

Paola Pierleoni;Alberto Belli;Andrea Gentili;Lorenzo Incipini;Lorenzo Palma;Sara Raggiunto;Agnese Sbrollini;Laura Burattini
2021

Abstract

Atrial Fibrillation (AF) is a common cardiac pathology and, due to its unpredictability, it sometimes remains not detected. Aim of this work is to present a new version of the already published eHealth system, that includes a new real-time Android application for AF detection and monitoring. The proposed eHealth system is composed of a commercial wearable sensor device (Bioharness 3.0 by Zephyr) for cardiac monitoring and a specially developed Android smartphone application. This application is able to real-time processing the raw data sensed from the wearable sensor, providing stress detection, calories consumption estimation, sinus arrhythmia detection, sinus rhythm classification, and apnea detection. As novelty, the new smartphone application also implemented a SVM-based algorithm designed to detect AF episodes by handling electrocardiogram and the heart-rate sequence of the subjects. The performance of the new SVM-based algorithm implemented in eHealth was tested on AF recordings and evaluated in term of sensitivity and specificity. The results show a sensitivity of 78% and a specificity of 66%, making this version of eHealth system suitable for real-time monitoring of AF events.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11566/272283
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact