The pillars of Industry 4.0 require a modern smart factory to be integrated, store data into the Cloud, access the Cloud for data analytics and share information at software level for simulation and Hardware-In-the-Loop capabilities. The resulting Cyber-Physical System is often called Cyber-Physical Manufacturing System, and it becomes fundamental to cope with the increased system complexity and the desired performances. However, since a lot of old production systems are based on monolitic architectures, with limited external communication ports and reduced local computational capabilities, it is very difficult to make such production lines compliant to Industry 4.0 pillars. Wireless Sensor Network is a solution for the smart connection of a production line to a Cyber-Physical System architecture, data processing through Cloud Computing. The scope of this research work is to propose an intermediate layer within the architecture that allows each device, production line and machine to be independently connected despite the adopted protocol. The solution is based on OSGi Framework, which is able to seamlessly integrate both hardware and software wireless sensors, send data into the Cloud for further data analysis, and grant both Hardware-In-the-Loop and Cloud Computing capabilities. A general description of the architecture is here proposed, together with preliminary results on a real manufacturing line for data collection and analysis over a period of two months.

Cyber-Physical Manufacturing Systems for Industry 4.0: Architectural Approach and Pilot Case / Prist, M.; Monteriu, A.; Freddi, A.; Pallotta, E.; Cicconi, P.; Giuggioloni, F.; Caizer, E.; Verdini, C.; Longhi, S.. - ELETTRONICO. - (2019), pp. 219-224. (Intervento presentato al convegno 2nd IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2019 tenutosi a Napoli, Italia nel 2019) [10.1109/METROI4.2019.8792880].

Cyber-Physical Manufacturing Systems for Industry 4.0: Architectural Approach and Pilot Case

Prist M.;Monteriu A.;Freddi A.;Pallotta E.;Cicconi P.;Longhi S.
2019-01-01

Abstract

The pillars of Industry 4.0 require a modern smart factory to be integrated, store data into the Cloud, access the Cloud for data analytics and share information at software level for simulation and Hardware-In-the-Loop capabilities. The resulting Cyber-Physical System is often called Cyber-Physical Manufacturing System, and it becomes fundamental to cope with the increased system complexity and the desired performances. However, since a lot of old production systems are based on monolitic architectures, with limited external communication ports and reduced local computational capabilities, it is very difficult to make such production lines compliant to Industry 4.0 pillars. Wireless Sensor Network is a solution for the smart connection of a production line to a Cyber-Physical System architecture, data processing through Cloud Computing. The scope of this research work is to propose an intermediate layer within the architecture that allows each device, production line and machine to be independently connected despite the adopted protocol. The solution is based on OSGi Framework, which is able to seamlessly integrate both hardware and software wireless sensors, send data into the Cloud for further data analysis, and grant both Hardware-In-the-Loop and Cloud Computing capabilities. A general description of the architecture is here proposed, together with preliminary results on a real manufacturing line for data collection and analysis over a period of two months.
2019
978-1-7281-0429-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/270113
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact