The need for high-quality and high-performance crystals for high-energy physics (e.g. scintillators) and biomedical applications require a good knowledge of their mechanical and optical properties, amongst the others. This is a mandatory step in many quality control process aimed at the improvement of the technological processes for crystals growth. Following the first analysis already done for Tetragonal crystals, in this paper we study the elasto-optic behavior of optically biaxial (Monoclinic and Orthorhombic groups) and uniaxial crystals (Trigonal and Hexagonal groups). We evaluate the photoelastic constants, the optic angle and the optic plane associated to various states of stress, in terms of the components of the Piezo-Optic tensor.
On the photoelastic constants for anisotropic stressed crystals / Rinaldi, D.; Davi', F.; Montalto, L.. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - STAMPA. - 947:(2019), pp. 162782-162790. [10.1016/j.nima.2019.162782]
On the photoelastic constants for anisotropic stressed crystals
Rinaldi D.;Davi' F.
;Montalto L.
2019-01-01
Abstract
The need for high-quality and high-performance crystals for high-energy physics (e.g. scintillators) and biomedical applications require a good knowledge of their mechanical and optical properties, amongst the others. This is a mandatory step in many quality control process aimed at the improvement of the technological processes for crystals growth. Following the first analysis already done for Tetragonal crystals, in this paper we study the elasto-optic behavior of optically biaxial (Monoclinic and Orthorhombic groups) and uniaxial crystals (Trigonal and Hexagonal groups). We evaluate the photoelastic constants, the optic angle and the optic plane associated to various states of stress, in terms of the components of the Piezo-Optic tensor.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.