The life-cycle assessment methodology was used to evaluate the environmental impact of friction stir welding of AA5754-H114 aluminium alloy sheets. Other works in literature considered the environmental impact of friction stir welding, but in this study the influence of different process parameters on midpoint category impacts were analysed. Friction stir welding was performed under different values of rotational and welding speeds. Moreover, pin tool wear and mechanical properties of joints were also evaluated. The pre- and post-processing stages were also considered. Raw materials, energy and all inputs associated with each stage of product life cycle were collected and evaluated to analyse the environmental impact index. The results showed that, irrespective of the rotational speed, the lowest welding speed investigated leads to the highest energy consumption and, consequently, to the highest values of the midpoint category impact. On the contrary, at the highest welding speed, the environmental impact assumes the lowest values. By concerning the rotational speed, its effect on the midpoint category impact is strongly reduced compared with the one given by the welding speed. A performance index, obtained by considering both the midpoint category impact and ultimate tensile strength of the joints, was also defined. Finally, the environmental sustainability of friction stir welding was compared with two different fusion welding technologies, namely gas tungsten arc welding and laser beam welding. The results showed that friction stir welding was characterized by midpoint category impacts much lower than those of the gas tungsten arc welding, while such discrepancies decreased with the laser beam welding.
Comparison among the environmental impact of solid state and fusion welding processes in joining an aluminium alloy / Bevilacqua, M.; Ciarapica, F. E.; Forcellese, A.; Simoncini, M.. - In: PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS. PART B, JOURNAL OF ENGINEERING MANUFACTURE. - ISSN 0954-4054. - ELETTRONICO. - 234:1-2(2020), pp. 140-156. [10.1177/0954405419845572]
Comparison among the environmental impact of solid state and fusion welding processes in joining an aluminium alloy
Bevilacqua, M.;Ciarapica, F. E.;Forcellese, A.;Simoncini, M.
2020-01-01
Abstract
The life-cycle assessment methodology was used to evaluate the environmental impact of friction stir welding of AA5754-H114 aluminium alloy sheets. Other works in literature considered the environmental impact of friction stir welding, but in this study the influence of different process parameters on midpoint category impacts were analysed. Friction stir welding was performed under different values of rotational and welding speeds. Moreover, pin tool wear and mechanical properties of joints were also evaluated. The pre- and post-processing stages were also considered. Raw materials, energy and all inputs associated with each stage of product life cycle were collected and evaluated to analyse the environmental impact index. The results showed that, irrespective of the rotational speed, the lowest welding speed investigated leads to the highest energy consumption and, consequently, to the highest values of the midpoint category impact. On the contrary, at the highest welding speed, the environmental impact assumes the lowest values. By concerning the rotational speed, its effect on the midpoint category impact is strongly reduced compared with the one given by the welding speed. A performance index, obtained by considering both the midpoint category impact and ultimate tensile strength of the joints, was also defined. Finally, the environmental sustainability of friction stir welding was compared with two different fusion welding technologies, namely gas tungsten arc welding and laser beam welding. The results showed that friction stir welding was characterized by midpoint category impacts much lower than those of the gas tungsten arc welding, while such discrepancies decreased with the laser beam welding.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.