We study systems of elliptic equations −∆u(x)+Fu(x, u) = 0 with potentials F ∈ C2(Rn,Rm) which are periodic and even in all their variables. We show that if F(x,u) has flip symmetry with respect to two of the compo- nents of x and if the minimal periodic solutions are not degenerate then the system has saddle type solutions on Rn

SADDLE SOLUTIONS FOR A CLASS OF SYSTEMS OF PERIODIC AND REVERSIBLE SEMILINEAR ELLIPTIC EQUATIONS / Alessio, Francesca Gemma; Montecchiari, Piero; Sfecci, Andrea. - In: NETWORKS AND HETEROGENEOUS MEDIA. - ISSN 1556-1801. - STAMPA. - 14:3(2019), pp. 569-589. [10.3934/nhm.2019022]

SADDLE SOLUTIONS FOR A CLASS OF SYSTEMS OF PERIODIC AND REVERSIBLE SEMILINEAR ELLIPTIC EQUATIONS

Francesca Gemma Alessio;Piero Montecchiari
;
Andrea Sfecci
2019-01-01

Abstract

We study systems of elliptic equations −∆u(x)+Fu(x, u) = 0 with potentials F ∈ C2(Rn,Rm) which are periodic and even in all their variables. We show that if F(x,u) has flip symmetry with respect to two of the compo- nents of x and if the minimal periodic solutions are not degenerate then the system has saddle type solutions on Rn
2019
Saddle solutions, reversible elliptic equations, renormalized functional, variational methods
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/266625
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact