We study systems of elliptic equations −∆u(x)+Fu(x, u) = 0 with potentials F ∈ C2(Rn,Rm) which are periodic and even in all their variables. We show that if F(x,u) has flip symmetry with respect to two of the compo- nents of x and if the minimal periodic solutions are not degenerate then the system has saddle type solutions on Rn

SADDLE SOLUTIONS FOR A CLASS OF SYSTEMS OF PERIODIC AND REVERSIBLE SEMILINEAR ELLIPTIC EQUATIONS / Alessio, Francesca Gemma; Montecchiari, Piero; Sfecci, Andrea. - In: NETWORKS AND HETEROGENEOUS MEDIA. - ISSN 1556-1801. - STAMPA. - 14:3(2019), pp. 569-589. [10.3934/nhm.2019022]

SADDLE SOLUTIONS FOR A CLASS OF SYSTEMS OF PERIODIC AND REVERSIBLE SEMILINEAR ELLIPTIC EQUATIONS

Francesca Gemma Alessio;Piero Montecchiari
;
Andrea Sfecci
2019-01-01

Abstract

We study systems of elliptic equations −∆u(x)+Fu(x, u) = 0 with potentials F ∈ C2(Rn,Rm) which are periodic and even in all their variables. We show that if F(x,u) has flip symmetry with respect to two of the compo- nents of x and if the minimal periodic solutions are not degenerate then the system has saddle type solutions on Rn
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/266625
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact