Introduction: γ-Hydroxybutyric acid is an endogenous substance, a therapeutic agent, and a recreational drug of abuse. This psychoactive substance acts as a depressant of the central nervous system and is commonly encountered in clinical and forensic practice, including impaired drivers, poisoned patients, and drug-related intoxication deaths. Objective: The aim of this review is to assist clinical and forensic practitioners with the interpretation of γ-hydroxybutyric acid concentrations in blood, urine, and alternative biological specimens from living and deceased persons. Methods: The information sources used to prepare this review were PubMed, Scopus, and Web-of-Science. These databases were searched using keywords γ-hydroxybutyrate (GHB), blood, urine, alternative specimens, non-conventional biological matrices, saliva, oral fluid, sweat, hair, vitreous humor (VH), brain, cerebrospinal fluid (CSF), dried blood spots (DBS), breast milk, and various combinations thereof. The resulting 4228 references were screened to exclude duplicates, which left 1980 articles for further consideration. These publications were carefully evaluated by taking into account the main aims of the review and 143 scientific papers were considered relevant. Analytical methods: The analytical methods used to determine γ-hydroxybutyric acid in blood and other biological specimens make use of gas- or liquid-chromatography coupled to mass spectrometry. These hyphenated techniques are accurate, precise, and specific for their intended purposes and the lower limit of quantitation in blood and other specimens is 0.5 mg/L or less. Human pharmacokinetics: GHB is rapidly absorbed from the gut and distributes into the total body water compartment. Only a small fraction of the dose (1–2%) is excreted unchanged in the urine. The plasma elimination half-life of γ-hydroxybutyric acid is short, being only about 0.5–0.9 h, which requires timely sampling of blood and other biological specimens for clinical and forensic analysis. Endogenous concentrations of GHB in blood: GHB is both an endogenous metabolite and a drug of abuse, which complicates interpretation of the laboratory results of analysis. Moreover, the concentrations of GHB in blood and other specimens tend to increase after sampling, especially in autopsy cases. This requires the use of practical “cut-off” concentrations to avoid reporting false positive results. These cut-offs are different for different biological specimen types. Concentrations of GHB in clinical and forensic practice: As a recreational drug GHB is predominantly used by young males (94%) with a mean age of 27.1 years. The mean (median) and range of concentrations in blood from apprehended drivers was 90 mg/L (82 mg/L) and 8–600 mg/L, respectively. The concentration distributions in blood taken from living and deceased persons overlapped, although the mean (median) and range of concentrations were higher in intoxication deaths; 640 mg/L (280 mg/L) and 30–9200 mg/L, respectively. Analysis of GHB in alternative specimens: All biological fluids and tissue containing water are suitable for the analysis of GHB. Examples of alternative specimens discussed in this review are CSF, saliva, hair strands, breast milk, DBS, VH, and brain tissue. Conclusions: Body fluids for the analysis of GHB must be obtained as quickly as possible after a poisoned patient is admitted to hospital or after a person is arrested for a drug-related crime to enhance chances of detecting the drug. The sampling of urine lengthens the window of detection by 3–4 h compared with blood samples, but with longer delays between last intake of GHB and obtaining specimens, hair strands, and/or nails might be the only option. In postmortem toxicology, the concentrations of drugs tend to be more stable in bladder urine, VH, and CSF compared with blood, because these sampling sites are protected from the spread of bacteria from the gut. Accordingly, the relationship between blood and urine concentrations of GHB furnishes useful information when drug intoxication deaths are investigated. © 2018, © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
Interpreting γ-hydroxybutyrate concentrations for clinical and forensic purposes / Busardò, F. P.; Jones, A. W.. - In: CLINICAL TOXICOLOGY. - ISSN 1556-3650. - 57:3(2019), pp. 149-163. [10.1080/15563650.2018.1519194]
Interpreting γ-hydroxybutyrate concentrations for clinical and forensic purposes
Busardò, F. P.;
2019-01-01
Abstract
Introduction: γ-Hydroxybutyric acid is an endogenous substance, a therapeutic agent, and a recreational drug of abuse. This psychoactive substance acts as a depressant of the central nervous system and is commonly encountered in clinical and forensic practice, including impaired drivers, poisoned patients, and drug-related intoxication deaths. Objective: The aim of this review is to assist clinical and forensic practitioners with the interpretation of γ-hydroxybutyric acid concentrations in blood, urine, and alternative biological specimens from living and deceased persons. Methods: The information sources used to prepare this review were PubMed, Scopus, and Web-of-Science. These databases were searched using keywords γ-hydroxybutyrate (GHB), blood, urine, alternative specimens, non-conventional biological matrices, saliva, oral fluid, sweat, hair, vitreous humor (VH), brain, cerebrospinal fluid (CSF), dried blood spots (DBS), breast milk, and various combinations thereof. The resulting 4228 references were screened to exclude duplicates, which left 1980 articles for further consideration. These publications were carefully evaluated by taking into account the main aims of the review and 143 scientific papers were considered relevant. Analytical methods: The analytical methods used to determine γ-hydroxybutyric acid in blood and other biological specimens make use of gas- or liquid-chromatography coupled to mass spectrometry. These hyphenated techniques are accurate, precise, and specific for their intended purposes and the lower limit of quantitation in blood and other specimens is 0.5 mg/L or less. Human pharmacokinetics: GHB is rapidly absorbed from the gut and distributes into the total body water compartment. Only a small fraction of the dose (1–2%) is excreted unchanged in the urine. The plasma elimination half-life of γ-hydroxybutyric acid is short, being only about 0.5–0.9 h, which requires timely sampling of blood and other biological specimens for clinical and forensic analysis. Endogenous concentrations of GHB in blood: GHB is both an endogenous metabolite and a drug of abuse, which complicates interpretation of the laboratory results of analysis. Moreover, the concentrations of GHB in blood and other specimens tend to increase after sampling, especially in autopsy cases. This requires the use of practical “cut-off” concentrations to avoid reporting false positive results. These cut-offs are different for different biological specimen types. Concentrations of GHB in clinical and forensic practice: As a recreational drug GHB is predominantly used by young males (94%) with a mean age of 27.1 years. The mean (median) and range of concentrations in blood from apprehended drivers was 90 mg/L (82 mg/L) and 8–600 mg/L, respectively. The concentration distributions in blood taken from living and deceased persons overlapped, although the mean (median) and range of concentrations were higher in intoxication deaths; 640 mg/L (280 mg/L) and 30–9200 mg/L, respectively. Analysis of GHB in alternative specimens: All biological fluids and tissue containing water are suitable for the analysis of GHB. Examples of alternative specimens discussed in this review are CSF, saliva, hair strands, breast milk, DBS, VH, and brain tissue. Conclusions: Body fluids for the analysis of GHB must be obtained as quickly as possible after a poisoned patient is admitted to hospital or after a person is arrested for a drug-related crime to enhance chances of detecting the drug. The sampling of urine lengthens the window of detection by 3–4 h compared with blood samples, but with longer delays between last intake of GHB and obtaining specimens, hair strands, and/or nails might be the only option. In postmortem toxicology, the concentrations of drugs tend to be more stable in bladder urine, VH, and CSF compared with blood, because these sampling sites are protected from the spread of bacteria from the gut. Accordingly, the relationship between blood and urine concentrations of GHB furnishes useful information when drug intoxication deaths are investigated. © 2018, © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.