One of the main sources of reactive nitrogen pollution is animal manure. The disposal of digestate (material remaining after the anaerobic digestion of a biodegradable feedstock) in agricultural soils could solve both the problems of soil fertilization and waste removal, but the fate of digestate in the environment must be assessed carefully before its massive utilization. To investigate whether digestate could be safely employed as a soil fertilizer, an agricultural field located in Monastier di Treviso (Northern Italy) and characterized by the presence of low hydraulic conductivity clay soils, was selected to be amended with bovine digestate. The experimental site was intensively monitored by a three-dimensional array of probes recording soil water content, temperature, and electrical conductivity, to solve the water and bulk mass fluxes in the unsaturated zone. High-resolution soil coring allowed the characterization of soil water composition over two hydrological years. Chloride, found in high concentrations in the digestate, was used as environmental tracer to track the fate of the percolating water. The study concluded that digestate could be confidently employed in short rotation buffer areas at an average rate of 195 ± 26 kg-N/ha/year in low hydraulic conductivity soils not affected by diffuse fracturing during dry periods.

Monitoring nutrients fate after digestate spreading in a short rotation buffer area / Colombani, Nicolò; Boz, Bruno; Gumiero, Bruna; Mastrocicco, Micòl. - In: ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL. - ISSN 0944-1344. - ELETTRONICO. - 24:29(2017), pp. 22816-22826. [10.1007/s11356-017-8451-5]

Monitoring nutrients fate after digestate spreading in a short rotation buffer area

Colombani, Nicolò
Conceptualization
;
2017-01-01

Abstract

One of the main sources of reactive nitrogen pollution is animal manure. The disposal of digestate (material remaining after the anaerobic digestion of a biodegradable feedstock) in agricultural soils could solve both the problems of soil fertilization and waste removal, but the fate of digestate in the environment must be assessed carefully before its massive utilization. To investigate whether digestate could be safely employed as a soil fertilizer, an agricultural field located in Monastier di Treviso (Northern Italy) and characterized by the presence of low hydraulic conductivity clay soils, was selected to be amended with bovine digestate. The experimental site was intensively monitored by a three-dimensional array of probes recording soil water content, temperature, and electrical conductivity, to solve the water and bulk mass fluxes in the unsaturated zone. High-resolution soil coring allowed the characterization of soil water composition over two hydrological years. Chloride, found in high concentrations in the digestate, was used as environmental tracer to track the fate of the percolating water. The study concluded that digestate could be confidently employed in short rotation buffer areas at an average rate of 195 ± 26 kg-N/ha/year in low hydraulic conductivity soils not affected by diffuse fracturing during dry periods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/265608
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact