Nanostructured metallic materials can be obtained by two major processing strategies: a bottom-up approach that starts with powdered metals to be mechanically and chemically compacted via different compaction methodologies, and a top-down approach that starts with bulk conventional metallic materials that are induced to a sometimes-extraordinary grain size reduction via different severe plastic deformation (SPD) methods. In the present study, a dual strategy was followed to obtain a sound and stable nanostructured commercially pure cobalt. Powdered cobalt of 2 µm was compacted by ball-milling (BM) followed by spark-plasma sintering (SPS) to obtain a bulk metallic material whose relative mass density reached a value of 95.8%. This process constituted a bottom-up strategy to obtain ultrafine submicrometer-grained bulk cobalt, and a top-down strategy of subjecting the BM + SPS submicrometer-grained cobalt to a specific SPD technique, namely equal-channel angular pressing (ECAP). The latter was carried out in one to four passes following so-called route BC, reaching 98.4% density and a nanometric-grained microstructure. The material was microstructurally and mechanically characterized by TEM (transmission electron microscope) and nanoindentation. The obtained results are a representative solid example for obtaining nanostructured metallic materials using both grain-refining strategies, bottom-up and top-down.
Nanostructured cobalt obtained by combining bottom-up and top-down approach / Cabibbo, M.. - In: METALS. - ISSN 2075-4701. - ELETTRONICO. - 8:11(2018), pp. 1-10. [10.3390/met8110962]
Nanostructured cobalt obtained by combining bottom-up and top-down approach
M. Cabibbo
Investigation
2018-01-01
Abstract
Nanostructured metallic materials can be obtained by two major processing strategies: a bottom-up approach that starts with powdered metals to be mechanically and chemically compacted via different compaction methodologies, and a top-down approach that starts with bulk conventional metallic materials that are induced to a sometimes-extraordinary grain size reduction via different severe plastic deformation (SPD) methods. In the present study, a dual strategy was followed to obtain a sound and stable nanostructured commercially pure cobalt. Powdered cobalt of 2 µm was compacted by ball-milling (BM) followed by spark-plasma sintering (SPS) to obtain a bulk metallic material whose relative mass density reached a value of 95.8%. This process constituted a bottom-up strategy to obtain ultrafine submicrometer-grained bulk cobalt, and a top-down strategy of subjecting the BM + SPS submicrometer-grained cobalt to a specific SPD technique, namely equal-channel angular pressing (ECAP). The latter was carried out in one to four passes following so-called route BC, reaching 98.4% density and a nanometric-grained microstructure. The material was microstructurally and mechanically characterized by TEM (transmission electron microscope) and nanoindentation. The obtained results are a representative solid example for obtaining nanostructured metallic materials using both grain-refining strategies, bottom-up and top-down.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.