This paper is devoted to the study of the following fractional Choquard equation $$ e^{2s}(-Delta)^{s} u + V(x)u = e^{mu-N}left(rac{1}{|x|^{mu}}*F(u) ight)f(u) mbox{ in } R^{N}, $$ where $arepsilon>0$ is a parameter, $sin (0, 1)$, $N>2s$, $(-Delta)^{s}$ is the fractional Laplacian, $V$ is a positive continuous potential with local minimum, $0<2s$, and $f$ is a superlinear continuous function with subcritical growth. By using the penalization method and the Ljusternik-Schnirelmann theory, we investigate the multiplicity and concentration of positive solutions for the above problem.

Multiplicity and Concentration Results for a Fractional Choquard Equation via Penalization Method / Ambrosio, Vincenzo. - In: POTENTIAL ANALYSIS. - ISSN 0926-2601. - 50:1(2019), pp. 55-82. [10.1007/s11118-017-9673-3]

Multiplicity and Concentration Results for a Fractional Choquard Equation via Penalization Method

Ambrosio, Vincenzo
2019-01-01

Abstract

This paper is devoted to the study of the following fractional Choquard equation $$ e^{2s}(-Delta)^{s} u + V(x)u = e^{mu-N}left(rac{1}{|x|^{mu}}*F(u) ight)f(u) mbox{ in } R^{N}, $$ where $arepsilon>0$ is a parameter, $sin (0, 1)$, $N>2s$, $(-Delta)^{s}$ is the fractional Laplacian, $V$ is a positive continuous potential with local minimum, $0<2s$, and $f$ is a superlinear continuous function with subcritical growth. By using the penalization method and the Ljusternik-Schnirelmann theory, we investigate the multiplicity and concentration of positive solutions for the above problem.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/265049
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 35
social impact