In this paper we study the existence and the multiplicity of positive solutions for the following class of fractional Schrödinger equations egin{equation*} arepsilon^{2s} (-Delta)^{s} u + V(x) u = f(u) mbox{ in } mathbb{R}^{N}, end{equation*} where $arepsilon>0$ is a parameter, $sin (0, 1)$, $N>2s$, $V: mathbb{R}^{N} ightarrow mathbb{R}$ is a continuous positive potential, and $f: mathbb{R} ightarrow mathbb{R}$ is a $C^{1}$ superlinear nonlinearity which does not satisfy the Ambrosetti–Rabinowitz condition. The main result is established by using minimax methods and Ljusternik–Schnirelmann theory of critical points.
A multiplicity result for a nonlinear fractional Schrödinger equation in $mathbb{R}^{N}$ without the Ambrosetti–Rabinowitz condition / Alves, Claudianor O.; Ambrosio, Vincenzo. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 466:1(2018), pp. 498-522. [10.1016/j.jmaa.2018.06.005]
A multiplicity result for a nonlinear fractional Schrödinger equation in $mathbb{R}^{N}$ without the Ambrosetti–Rabinowitz condition
Ambrosio, Vincenzo
2018-01-01
Abstract
In this paper we study the existence and the multiplicity of positive solutions for the following class of fractional Schrödinger equations egin{equation*} arepsilon^{2s} (-Delta)^{s} u + V(x) u = f(u) mbox{ in } mathbb{R}^{N}, end{equation*} where $arepsilon>0$ is a parameter, $sin (0, 1)$, $N>2s$, $V: mathbb{R}^{N} ightarrow mathbb{R}$ is a continuous positive potential, and $f: mathbb{R} ightarrow mathbb{R}$ is a $C^{1}$ superlinear nonlinearity which does not satisfy the Ambrosetti–Rabinowitz condition. The main result is established by using minimax methods and Ljusternik–Schnirelmann theory of critical points.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.