In this paper we study the existence and the multiplicity of positive solutions for the following class of fractional Schrödinger equations egin{equation*} arepsilon^{2s} (-Delta)^{s} u + V(x) u = f(u) mbox{ in } mathbb{R}^{N}, end{equation*} where $arepsilon>0$ is a parameter, $sin (0, 1)$, $N>2s$, $V: mathbb{R}^{N} ightarrow mathbb{R}$ is a continuous positive potential, and $f: mathbb{R} ightarrow mathbb{R}$ is a $C^{1}$ superlinear nonlinearity which does not satisfy the Ambrosetti–Rabinowitz condition. The main result is established by using minimax methods and Ljusternik–Schnirelmann theory of critical points.

A multiplicity result for a nonlinear fractional Schrödinger equation in $mathbb{R}^{N}$ without the Ambrosetti–Rabinowitz condition / Alves, Claudianor O.; Ambrosio, Vincenzo. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 466:1(2018), pp. 498-522. [10.1016/j.jmaa.2018.06.005]

A multiplicity result for a nonlinear fractional Schrödinger equation in $mathbb{R}^{N}$ without the Ambrosetti–Rabinowitz condition

Ambrosio, Vincenzo
2018-01-01

Abstract

In this paper we study the existence and the multiplicity of positive solutions for the following class of fractional Schrödinger equations egin{equation*} arepsilon^{2s} (-Delta)^{s} u + V(x) u = f(u) mbox{ in } mathbb{R}^{N}, end{equation*} where $arepsilon>0$ is a parameter, $sin (0, 1)$, $N>2s$, $V: mathbb{R}^{N} ightarrow mathbb{R}$ is a continuous positive potential, and $f: mathbb{R} ightarrow mathbb{R}$ is a $C^{1}$ superlinear nonlinearity which does not satisfy the Ambrosetti–Rabinowitz condition. The main result is established by using minimax methods and Ljusternik–Schnirelmann theory of critical points.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/265044
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact