In this paper, we deal with the multiplicity and concentration of positive solu- tions for the following fractional Schrödinger-Kirchhoff type equation egin{equation*} M left( rac{1}{arepsilon^{3-2s}} iint_{mathbb{R}^{6}} rac{|u(x) - u(y)|^{2}}{|x-y|^{3+2s}} dxdy + rac{1}{arepsilon^{3}} int_{mathbb{R}^{3}} V(x) u^{2} dx ight) [arepsilon^{2s} (-Delta)^{s} u + V(x) u] = f(u) mbox{ in } mathbb{R}^{3}, end{equation*} where $arepsilon>0$ is a small parameter, $sin (rac{3}{4}, 1)$, $(-Delta)^{s}$ is the fractional Laplacian, M is a Kirchhoff function, V is a continuous positive potential, and f is a superlinear continuous function with subcritical growth. By using penalization techniques and Ljusternik-Schnirelmann theory, we investigate the relation between the number of positive solutions with the topology of the set where the potential attains its minimum.

Concentration phenomena for a fractional Schrödinger-Kirchhoff type equation / Ambrosio, Vincenzo; Isernia, Teresa. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - 41:2(2018), pp. 615-645. [10.1002/mma.4633]

Concentration phenomena for a fractional Schrödinger-Kirchhoff type equation

Ambrosio, Vincenzo;Isernia, Teresa
2018-01-01

Abstract

In this paper, we deal with the multiplicity and concentration of positive solu- tions for the following fractional Schrödinger-Kirchhoff type equation egin{equation*} M left( rac{1}{arepsilon^{3-2s}} iint_{mathbb{R}^{6}} rac{|u(x) - u(y)|^{2}}{|x-y|^{3+2s}} dxdy + rac{1}{arepsilon^{3}} int_{mathbb{R}^{3}} V(x) u^{2} dx ight) [arepsilon^{2s} (-Delta)^{s} u + V(x) u] = f(u) mbox{ in } mathbb{R}^{3}, end{equation*} where $arepsilon>0$ is a small parameter, $sin (rac{3}{4}, 1)$, $(-Delta)^{s}$ is the fractional Laplacian, M is a Kirchhoff function, V is a continuous positive potential, and f is a superlinear continuous function with subcritical growth. By using penalization techniques and Ljusternik-Schnirelmann theory, we investigate the relation between the number of positive solutions with the topology of the set where the potential attains its minimum.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/264985
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 42
social impact