In this paper, we deal with the following fractional nonlocal p-Laplacian problem: \begin{equation*} \left\{ \begin{array}{ll} (-\Delta)^{s}_{p}u = \lambda \beta(x) u^{q} + f(u) &\mbox{ in } \Omega, \\ u\geq 0, u\notequiv 0 &\mbox{ in } \Omega, \\ u=0 &\mbox{ in } \mathbb{R}^{N}\setminus \Omega, \end{array} \right. \end{equation*} where $\Omega\subset \mathbb{R}^{N}$ is a bounded domain with a smooth boundary of $\mathbb{R}^{N}$, $s\in (0, 1)$, $p\in (1, \infty)$, $N>sp$, $\lambda$ is a real parameter, $\beta \in L^{\infty}(\Omega)$ is allowed to be indefinite in sign, $q>0$ and $f:[0, \infty) \rightarrow \mathbb{R}$ is a continuous function oscillating near the origin or at infinity. By using variational and topological methods, we obtain the existence of infinitely many solutions for the problem under consideration. The main results obtained here represent some new interesting phenomena in the nonlocal setting.

On nonlocal fractional Laplacian problems with oscillating potentials / Ambrosio, Vincenzo; D’Onofrio, Luigi; Bisci, Giovanni Molica. - In: ROCKY MOUNTAIN JOURNAL OF MATHEMATICS. - ISSN 0035-7596. - 48:5(2018), pp. 1399-1436. [10.1216/RMJ-2018-48-5-1399]

On nonlocal fractional Laplacian problems with oscillating potentials

Ambrosio, Vincenzo;
2018-01-01

Abstract

In this paper, we deal with the following fractional nonlocal p-Laplacian problem: \begin{equation*} \left\{ \begin{array}{ll} (-\Delta)^{s}_{p}u = \lambda \beta(x) u^{q} + f(u) &\mbox{ in } \Omega, \\ u\geq 0, u\notequiv 0 &\mbox{ in } \Omega, \\ u=0 &\mbox{ in } \mathbb{R}^{N}\setminus \Omega, \end{array} \right. \end{equation*} where $\Omega\subset \mathbb{R}^{N}$ is a bounded domain with a smooth boundary of $\mathbb{R}^{N}$, $s\in (0, 1)$, $p\in (1, \infty)$, $N>sp$, $\lambda$ is a real parameter, $\beta \in L^{\infty}(\Omega)$ is allowed to be indefinite in sign, $q>0$ and $f:[0, \infty) \rightarrow \mathbb{R}$ is a continuous function oscillating near the origin or at infinity. By using variational and topological methods, we obtain the existence of infinitely many solutions for the problem under consideration. The main results obtained here represent some new interesting phenomena in the nonlocal setting.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/264984
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact