In this paper, we first give the geodesic in closed form on the real symplectic group endowed with a Riemannian metric and then study a geodesic‐based Riemannian‐steepest‐descent approach to compute the empirical average out of a set of symplectic matrices. The devised averaging algorithm is compared with the Euclidean gradient algorithm and the extended Hamiltonian algorithm. Simulation examples show that the convergence of the geodesic‐based Riemannian‐steepest‐descent algorithm is the fastest among the 3 considered algorithms.

A Riemannian-steepest-descent approach for optimization on the real symplectic group / Wang, Jing; Sun, Huafei; Fiori, Simone. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - ELETTRONICO. - 41:11(2018), pp. 4273-4286. [10.1002/mma.4890]

A Riemannian-steepest-descent approach for optimization on the real symplectic group

Fiori, Simone
Writing – Review & Editing
2018-01-01

Abstract

In this paper, we first give the geodesic in closed form on the real symplectic group endowed with a Riemannian metric and then study a geodesic‐based Riemannian‐steepest‐descent approach to compute the empirical average out of a set of symplectic matrices. The devised averaging algorithm is compared with the Euclidean gradient algorithm and the extended Hamiltonian algorithm. Simulation examples show that the convergence of the geodesic‐based Riemannian‐steepest‐descent algorithm is the fastest among the 3 considered algorithms.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/264712
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact