Adamussium colbecki is one of the most common bivalve mollusks found in the coastal waters of the Antarctic continent. Its widespread distribution, easiness of collection and sensitivity to slight alterations of water temperature and presence of pollutants make this cold-adapted scallop a potentially interesting sentinel species for the biomonitoring of the impact of anthropic activities on the Antarctic benthic communities. However, while the availability of genetic and molecular data would represent a resource of the utmost importance to enable the use of this species as a model for environmental studies, this data is presently nearly non-existing. Here we report a high quality de novo assembled and annotated transcriptome for A. colbecki, discussing the long-debated phylogenetic position of this species within the order Pectinida through a Bayesian phylogenomics approach, based on the concatenated multiple sequence alignment of 978 universally conserved orthologous genes.
The first transcriptomic resource for the Antarctic scallop Adamussium colbecki
Barucca, Marco;Canapa, Adriana;
2019-01-01
Abstract
Adamussium colbecki is one of the most common bivalve mollusks found in the coastal waters of the Antarctic continent. Its widespread distribution, easiness of collection and sensitivity to slight alterations of water temperature and presence of pollutants make this cold-adapted scallop a potentially interesting sentinel species for the biomonitoring of the impact of anthropic activities on the Antarctic benthic communities. However, while the availability of genetic and molecular data would represent a resource of the utmost importance to enable the use of this species as a model for environmental studies, this data is presently nearly non-existing. Here we report a high quality de novo assembled and annotated transcriptome for A. colbecki, discussing the long-debated phylogenetic position of this species within the order Pectinida through a Bayesian phylogenomics approach, based on the concatenated multiple sequence alignment of 978 universally conserved orthologous genes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.