Polyamine Phosphate Nanoparticles (PANs) have great potential for the delivery of large therapeutics, such as plasmids and/or siRNAs. The formation of PANs by complexation of Poly(allylamine hydrochloride) (PAH) and phosphate ions from Phosphate Buffer (PB) was studied here, and how it is affected by the presence of phosphate ions from PB and ionic strength. From Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) the critical PB concentration for PANs formation was determined. Below this critical point, Small Angle X-ray Scattering (SAXS) studies revealed that small PAH-phosphate aggregates coexist with not complexed or weakly complexed polymer chains in solution and that the presence of the phosphate ions increases the Kuhn length of the polymer chains until that only spherical aggregates are present in solution. TEM, DLS and SAXS showed the increase of PANs size with ionic strength up to 250 mM NaCl. At higher NaCl concentrations, PANs disassemble into smaller aggregates. Isothermal Titration Calorimetry (ITC) showed that PAN formation is an exothermic process and the association of phosphates below the critical PB concentration is entropically controlled.

Mechanistic study of the nucleation and conformational changes of polyamines in presence of phosphate ions / Andreozzi, Patrizia; Ricci, Caterina; Porcel, Joaquin Emiliano Martinez; Moretti, Paolo; Di Silvio, Desirè; Amenitsch, Heinz; Ortore, Maria Grazia; Moya, Sergio E.. - In: JOURNAL OF COLLOID AND INTERFACE SCIENCE. - ISSN 0021-9797. - STAMPA. - 543:(2019), pp. 335-342. [10.1016/j.jcis.2019.02.040]

Mechanistic study of the nucleation and conformational changes of polyamines in presence of phosphate ions

Ricci, Caterina;Moretti, Paolo;Ortore, Maria Grazia;
2019-01-01

Abstract

Polyamine Phosphate Nanoparticles (PANs) have great potential for the delivery of large therapeutics, such as plasmids and/or siRNAs. The formation of PANs by complexation of Poly(allylamine hydrochloride) (PAH) and phosphate ions from Phosphate Buffer (PB) was studied here, and how it is affected by the presence of phosphate ions from PB and ionic strength. From Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) the critical PB concentration for PANs formation was determined. Below this critical point, Small Angle X-ray Scattering (SAXS) studies revealed that small PAH-phosphate aggregates coexist with not complexed or weakly complexed polymer chains in solution and that the presence of the phosphate ions increases the Kuhn length of the polymer chains until that only spherical aggregates are present in solution. TEM, DLS and SAXS showed the increase of PANs size with ionic strength up to 250 mM NaCl. At higher NaCl concentrations, PANs disassemble into smaller aggregates. Isothermal Titration Calorimetry (ITC) showed that PAN formation is an exothermic process and the association of phosphates below the critical PB concentration is entropically controlled.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/264047
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact