Autonomous Underwater Vehicles (AUVs) are robotic systems capable to move underwater and complete a planned mission autonomously, thus without the presence of human operators nearby or on a ship close to the working site. While their sensors payload allows AUVs to examine the surrounding environmente and know their position, which is a fundamental issue in order to operate autonomously, the propulsive system allows the vehicle to move and thus perform its mission. Besides a hull shape optimization, which in turn reduce the resistance force that the water exercise on the AUV, a more efficient propulsive system allows to save power and thus increase the vehicle autonomy, thus reducing hull space reserved to batteries which in turn can be exploited to house a larger sensor payload. In order to improve the propulsive performances of AUVs, bio-inspired solutions have been thoroughly investigated in the last two decades as a source of efficiency and manoeuvrability improvement: indeed, the propulsive performances evolved by aquatic animals in thousands of years are still far superior to the state of art of modern nautical technology. For example, dolphins dart through water with apparent ease, playfully bursting through the waves as they follows ships cruising at 20 nautical miles per hour; similarly, a nibble fish can reverse its direction of motion without breaking, with a turning radius of the order of 10-30% of their body length. For comparison, a ship must slow down by half of its speed to perform the same manoeuvre, with a turning radius ten times higher than the corresponding value for a fish. Despite the efforts made to pursue the huge potential payoffs of marine animals’ locomotion, the propulsive performances of biological swimmers are still far to reach. Nevertheless, the last two decades have withnessed a considerable growth in the in the study of aquatic animals propulsion and several prototypes of robotic fish have been manufactured by researchers all around the world. The aim to replace the conventional screw propellers traditionally employed on AUVs with more efficient bio-ispired thruster has guided the author of the present dissertation during his research. In the robotic literature, biomimetic underwater vehicles usually adopt a direct drive to actuate their undulating bodies, being those piecewise-flexible open-chain mechanisms or soft and compliant structures. Therefore, the use of servomotors, which are characterized by low mechanical efficiency is a common feature among robotic fish prototypes. Therefore, in the present dissertation, two transmission mechanisms have been designed in order to replace the aforementioned direct drive actuation with more efficient solutions integrating DC motors or brushless ones. Moreover, the proposed systems are characterized by a constant velocity setting for the motor, while the alternate-rotation motion law of servomotors requires non-linear position control which increases the effort of the onboard electronic. In order to test the worthiness of the proposed transmission system in a real case scenario, it has been adopted to drive tha biomimetic thruster, i.e. the fin, of an ostraciiform robotic fish. In order to predict the value of thrust force necessary to move the vehicle and correspondingly select a motor, the propulsive forces generated by fin have been investigated by adopting a multiphysics approach: computational fluid dynamics simulations and multi-body analysis have been coupled in order to obtain a complete characterization of the vehicle dynamics and its propulsive systems. Once the motor torque has been successfully computed in the cruising condition, the mechatronic system composed by the motor, the trasnmission mechanism and its driven member, i.e. the thrust-generating fin, has been optimized by integrating a torsional spring in the fin shaft. This solution allowed to save power, and thus increase the efficiency, in the absence of a proper energy recovery system. Moreover, the method adopted to simulate the dynamic behaviour of the robotic fish manufactured by the author can be also used to size biomimetic robots of different size, once a cruise condition and target velocity have been properly set. The aforementioned numerical predictions have been also validated experimentally on a scale model of the fin suspended in a water flume. The proposed setup has required the design and manufacturing of a custom estensimetric force sensor, sized accordingly to the computational fluid dynamics results that the tests aimed to validate. By means of this device, a complete characterization of the ostraciifom thruster has been obtained in a set of operating conditions close to regime of maximal propulsive efficiency. Finally, the last topic discussed in the present dissertation regards the investigation of the forces generated by a flapping foil, a motion law that exactly matches the one exhibited by the most efficient swimmers in nature. Following a sensitivity analysis, performed by CFD techniques, a transmission mechanism has been succesfully designed and prototyped in order to generate the aforementioned motion law. Future work will include the investigation of the propulsive performances of the resulting propulsive system, composed from the assembly of the high-performing biomimetic thruster and its driving transmission mechanism
I Veicoli Sottomarini Autonomi (AUV) sono robot in grado di navigare sotto la superficie dell’acqua e svolgere la missione assegnata in modo autonomo, cioè senza la presenza di un operatore umano nelle vicinanze né di una nave nei pressi dell’area di lavoro. Mentre i sensori istallati a bordo consentono all’AUV di analizzare l’ambiente circostanze e di conoscere la propria posizione, requisiti che devono essere soddisfatti per poter operare in modo autonomo, il sistema propulsivo permette al veicolo di muoversi e svolgere così la missione. Da un punto di vista energetico, due fattori contribuiscono a ridurre l’energia spesa per avanzare nel fluido: l’ottimizzazione della forma dello scafo e l’impiego di un propulsore più efficiente. In entrambi i casi si ottiene un’aumento dell’autonomia del robot a parità di riserva di energia imbarcata (pacco batterie). Viceversa, la stessa diminuzione di spesa può essere sfruttata – a parità di autonomia – per ridurre l’ingombro del sistema energetico e sfruttare lo spazio risparmiato per istallare altri sensori. Negli ultimi vent’anni, l’obiettivo di massimizzare l’efficienza e la manovrabilità degli AUV ha spinto la ricerca verso l’impiego di sistemi propulsivi bio-ispirati: diversi studi in letteratura mostrano infatti che le capacità natatorie sviluppate dai pesci e dai mammiferi marini in migliaia di anni di evoluzione, sono di gran lunga superiori a quanto è in grado di produrre la moderna tecnologia navale. I delfini ad esempio, sono in grado di nuotare senza apparente sforzo sulla scia delle grandi navi in navigazione a più di 20 miglia nautiche all’ora, mentre alcuni pesci sono in grado di invertire la direzione del moto senza bisogno di ridurre la propria velocità e con raggi di virata dell’ordine del 10-30% della lunghezza del loro corpo. In confronto, una nave deve prima dimezzare la propria velocità ed i raggi di virata sono un ordine di grandezza più grandi rispetto a quelli di un pesce. Nonostante gli sforzi profusi per cercare di eguagliare le prestezioni propulsive dei sistemi biologici marini, il margine da colmare resta ancora ampio. Ciò nonostante, nel’ultimo ventennio, l’interesse verso la meccanica del nuoto degli animali marini è cresciuto considerevolmente e ciò ha portato alla realizzazione di numerosi prototipi di pesce robotico sviluppati da ricercatori in tutto il mondo. L’obiettivo perseguito nel presente progetto di dottorato consiste nello studio di soluzioni propulsive bio-ispirate con le quali sostituire i thruster ad elica comunemente utilizzati sugli AUV. Da un’analisi dello stato dell’arte, risulta che i velicoli sottomarini biomimetici sono caratterizzati dall’attuazione diretta dei delle parti mobili, che normalmente costituiscono le pinne e la coda del pesce robotico, il cui moto ondulatorio genera la spinta propulsiva; queste superfici di controllo sono realizzate con strutture completamente flessibili o con catene cinematiche aperte, la cui funzione è analoga a quella dell’apparato muscolo-scheletrico del pesce corrispondente. Di conseguenza, la quasi totalità dei prototipi in letteratura è azionato da servomotori, la cui efficienza meccanica è sensibilmente inferiore rispetto ai più performanti motori in corrente continua. Sulla base di queste osservazioni, in questo progetto di dottorato sono state studiate due trasmissioni meccaniche, con lo scopo di sostituire i già citati sistemi ad attuazione diretta con soluzioni integranti motori in corrente continua, di tipo brushed e brushless. Oltre ad una maggiore efficienza energetica, l’utilizzo della trasmissione meccanica proposta impone al motore una legge di moto a velocità costante: al contrario, l’attuazione diretta mediante servomotori è caratterizzata da una legge di moto sinusoidale, che richiede quindi un controllo in posizione non-lineare, da cui deriva un maggior sforzo computazionale da parte dell’elettronica di bordo. Per validare sperimentalmente la trasmisione proposta, essa è stata installata nel corpartimento propulsivo di un veicolo biomimetico ostraciiforme, come sistema di attuazione per la pinna caudale del robot. Per poter quantificare l’intensità delle forze necessarie per l’avanzamento e quindi dimensionare il motore elettrico da collegare alla trasmissione, è stato eseguita un analisi multi-fisica: le forze propulsive generate dalla pinna isolata, precedentemente calcolate con tecniche numeriche – fluidodinamica computazionale (CFD) – sono state insetie nel modello multibody del veicolo completo, per risolverne la dinamica. Le coppie applicate al motore sono state quindi utilizzate per dimensionarne la taglia nelle condizioni di crociera, mentre il sistema meccatronico composto dalla trasmissione, dal suo attuatore e dalla pinna è stato ulteriormente ottimizzato inserendo una molla di torsione applicata all’albero della pinna stessa. Quest’ultima soluzione consente di ridurre l’energia spesa – e quindi di aumentare l’efficienza - in assenza di un sistema di recupero energetico che ricarichi le batterie nelle fasi in cui il motore si comporta da freno. Infine, la procedura di modellazione e simulazione utilizzata per risolvere la dinamica del pesce robotico ha consentito di mettere a punto un criterio di dimensionamento applicabile a veicoli di diverse dimensioni, una volta stabilita la taglia, una condizione di navigazione ed una velocità di crociera corrispondente. Le analisi numeriche CFD sono state validate sperimentalmente su un modello in scala della pinna immersa in una canalina a ricircolo d’acqua. Il setup proposto ha richiesto la progettazione e la realizzazione di un sensore di forza estensimetrico, dimensionato utilizzando proprio i risultati delle analisi fluidodinamiche che le prove puntano a validare. La tecnica sperimentale adottata ha quindi permesso di ottenere una completa caratterizzazione delle prestazioni del propulsore ostraciiforme per valori della frequenza di oscillazione vicini alla condizione di efficienza massima. L’ultimo argomento affrontato nella presente tesi di dottorato riguarda l’analisi delle forze generate da un profilo roto-traslante, o flapper, la cui legge di moto coincide con quella delle pinne dei più efficienti nuotatori biologici, i thunniformi. Utilizzando i risultati ottenuti dalle analisi fluidodinamiche svolte su una pinna roto-traslante, è stata progettata una seconda trasmissione in grado di generare la legge di moto richiesta. Negli sviluppi futuri di questo progetto si provvederà alla validazione sperimentale del sistema propulsivo formato dal flapper thunniforme e dalla trasmissione meccanica ad esso dedicata.
Development of Biomimetic Propulsive Systems in a Multyphysics Environment / Costa, Daniele. - (2019 Feb 25).
Development of Biomimetic Propulsive Systems in a Multyphysics Environment
COSTA, DANIELE
2019-02-25
Abstract
Autonomous Underwater Vehicles (AUVs) are robotic systems capable to move underwater and complete a planned mission autonomously, thus without the presence of human operators nearby or on a ship close to the working site. While their sensors payload allows AUVs to examine the surrounding environmente and know their position, which is a fundamental issue in order to operate autonomously, the propulsive system allows the vehicle to move and thus perform its mission. Besides a hull shape optimization, which in turn reduce the resistance force that the water exercise on the AUV, a more efficient propulsive system allows to save power and thus increase the vehicle autonomy, thus reducing hull space reserved to batteries which in turn can be exploited to house a larger sensor payload. In order to improve the propulsive performances of AUVs, bio-inspired solutions have been thoroughly investigated in the last two decades as a source of efficiency and manoeuvrability improvement: indeed, the propulsive performances evolved by aquatic animals in thousands of years are still far superior to the state of art of modern nautical technology. For example, dolphins dart through water with apparent ease, playfully bursting through the waves as they follows ships cruising at 20 nautical miles per hour; similarly, a nibble fish can reverse its direction of motion without breaking, with a turning radius of the order of 10-30% of their body length. For comparison, a ship must slow down by half of its speed to perform the same manoeuvre, with a turning radius ten times higher than the corresponding value for a fish. Despite the efforts made to pursue the huge potential payoffs of marine animals’ locomotion, the propulsive performances of biological swimmers are still far to reach. Nevertheless, the last two decades have withnessed a considerable growth in the in the study of aquatic animals propulsion and several prototypes of robotic fish have been manufactured by researchers all around the world. The aim to replace the conventional screw propellers traditionally employed on AUVs with more efficient bio-ispired thruster has guided the author of the present dissertation during his research. In the robotic literature, biomimetic underwater vehicles usually adopt a direct drive to actuate their undulating bodies, being those piecewise-flexible open-chain mechanisms or soft and compliant structures. Therefore, the use of servomotors, which are characterized by low mechanical efficiency is a common feature among robotic fish prototypes. Therefore, in the present dissertation, two transmission mechanisms have been designed in order to replace the aforementioned direct drive actuation with more efficient solutions integrating DC motors or brushless ones. Moreover, the proposed systems are characterized by a constant velocity setting for the motor, while the alternate-rotation motion law of servomotors requires non-linear position control which increases the effort of the onboard electronic. In order to test the worthiness of the proposed transmission system in a real case scenario, it has been adopted to drive tha biomimetic thruster, i.e. the fin, of an ostraciiform robotic fish. In order to predict the value of thrust force necessary to move the vehicle and correspondingly select a motor, the propulsive forces generated by fin have been investigated by adopting a multiphysics approach: computational fluid dynamics simulations and multi-body analysis have been coupled in order to obtain a complete characterization of the vehicle dynamics and its propulsive systems. Once the motor torque has been successfully computed in the cruising condition, the mechatronic system composed by the motor, the trasnmission mechanism and its driven member, i.e. the thrust-generating fin, has been optimized by integrating a torsional spring in the fin shaft. This solution allowed to save power, and thus increase the efficiency, in the absence of a proper energy recovery system. Moreover, the method adopted to simulate the dynamic behaviour of the robotic fish manufactured by the author can be also used to size biomimetic robots of different size, once a cruise condition and target velocity have been properly set. The aforementioned numerical predictions have been also validated experimentally on a scale model of the fin suspended in a water flume. The proposed setup has required the design and manufacturing of a custom estensimetric force sensor, sized accordingly to the computational fluid dynamics results that the tests aimed to validate. By means of this device, a complete characterization of the ostraciifom thruster has been obtained in a set of operating conditions close to regime of maximal propulsive efficiency. Finally, the last topic discussed in the present dissertation regards the investigation of the forces generated by a flapping foil, a motion law that exactly matches the one exhibited by the most efficient swimmers in nature. Following a sensitivity analysis, performed by CFD techniques, a transmission mechanism has been succesfully designed and prototyped in order to generate the aforementioned motion law. Future work will include the investigation of the propulsive performances of the resulting propulsive system, composed from the assembly of the high-performing biomimetic thruster and its driving transmission mechanismFile | Dimensione | Formato | |
---|---|---|---|
Tesi_Costa.pdf
accesso aperto
Descrizione: Tesi_Costa.pdf
Tipologia:
Tesi di dottorato
Licenza d'uso:
Creative commons
Dimensione
6.78 MB
Formato
Adobe PDF
|
6.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.