The possibility to use titanium as alternative reinforcement for concrete is investigated in this thesis by focusing on the interfacial behaviour that the two materials develop when they are combined in a composite structural material. To this end, several experimental programs were conducted. The first one concerns the pull-out behaviour of plain bars made of the titanium alloy Ti6Al4V from two different concrete mixtures, i.e. Normal and Light Weigh Concrete (NWC and LWC, respectively). The second experimental program investigates the pull-out behaviour of Ti6Al4V straight and hooked-end fibres from LWC specimens. The third and last series of experiments regards the fracture toughness characterisation of a fibre reinforced concrete material made of LWC and titanium fibres (TiFRC). A series of specimens and a full-scale beam made of TiFRC, without any other reinforcement, have been built and tested under three-point load conditions in order to measure the size effect on the flexural strength. The experimental results concerning the pull-out tests are supported by Finite Element (FE) analyses. Particularly, the results of the bar pull-out tests, combined with Scanning Electron Microscope (SEM) analyses, show that, although the employed rebars are plain, the debonding process is strongly affected by defects-induced surface roughness present at the microscopic level, which activates mechanical interlocking responsible for the dilatant behaviour of the interface. A novel cohesive zone model micromechanics-based formulation is implemented in the FE model in order to account for such aspects. The introduced enhanced degrading M-CZM, accounting for damage, friction, mechanical interlocking and dilatancy, is used to carry out sensitivity analyses and identification procedures on the FE models simulating the bar pull-out tests. The proposed modelling strategy is further validated by performing FE simulation of straight fibres pull-out tests.
Questa tesi affronta la possibilità di utilizzare il titanio come materiale alternativo per il rinforzo del calcestruzzo dal punto di vista del comportamento di interfaccia che i due materiali sviluppano quando sono combinati in un materiale composito strutturale. A tal fine sono stati condotti diversi programmi sperimentali: prove di sfilamento (pull-out) di barre lisce in lega di titanio Ti6Al4V da provini di calcestruzzo di peso normale (NWC) e alleggerito (LWC); prove di pull-out di fibre in Ti6Al4V dritte ed uncinate alle estremità da provini in LWC; prove di flessione su tre punti su provini e su una trave di dimensioni realistiche in calcestruzzo alleggerito fibrorinforzato con fibre di titanio (TiFRC). L’ultimo programma sperimentale è volto alla caratterizzazione della resistenza alla frattura e alla quantificazione dell’effetto scala sulla resistenza a flessione. Le prove di pull-out sono state supportate dall’analisi numerica. I risultati dei test condotti sulle barre in lega di titanio, coadiuvati da analisi al microscopio elettronico (SEM) e ottico, hanno evidenziato che, nonostante le barre impiegate siano lisce, il processo di sfilamento è influenzato dalla formazione di asperità all’interfaccia, dovuta prevalentemente alla presenza di materiale matriciale residuo sulla superficie delle barre. La rottura di tali asperità genera un ingranamento meccanico a livello microscopico, a sua volta responsabile del comportamento dilatante dell’interfaccia. Per descrivere numericamente questo processo è stato formulato un nuovo modello coesivo definito enhanced degrading M-CZM, che tiene conto dell’azione di danno, attrito, ingranamento meccanico e dilatanza. Con tale modello, sono state condotte analisi di sensitività e una procedura di identificazione per riprodurre i risultati sperimentali delle prove di pull-out delle barre. Un’ulteriore validazione del modello è stata ottenuta simulando numericamente le prove di sfilamento delle fibre dritte.
Experimental and Numerical Characterisation of the Mechanical Properties of the Titanium Alloy-lightweight Concrete Interface / Maracci, Diletta. - (2019 Mar 27).
Experimental and Numerical Characterisation of the Mechanical Properties of the Titanium Alloy-lightweight Concrete Interface
MARACCI, DILETTA
2019-03-27
Abstract
The possibility to use titanium as alternative reinforcement for concrete is investigated in this thesis by focusing on the interfacial behaviour that the two materials develop when they are combined in a composite structural material. To this end, several experimental programs were conducted. The first one concerns the pull-out behaviour of plain bars made of the titanium alloy Ti6Al4V from two different concrete mixtures, i.e. Normal and Light Weigh Concrete (NWC and LWC, respectively). The second experimental program investigates the pull-out behaviour of Ti6Al4V straight and hooked-end fibres from LWC specimens. The third and last series of experiments regards the fracture toughness characterisation of a fibre reinforced concrete material made of LWC and titanium fibres (TiFRC). A series of specimens and a full-scale beam made of TiFRC, without any other reinforcement, have been built and tested under three-point load conditions in order to measure the size effect on the flexural strength. The experimental results concerning the pull-out tests are supported by Finite Element (FE) analyses. Particularly, the results of the bar pull-out tests, combined with Scanning Electron Microscope (SEM) analyses, show that, although the employed rebars are plain, the debonding process is strongly affected by defects-induced surface roughness present at the microscopic level, which activates mechanical interlocking responsible for the dilatant behaviour of the interface. A novel cohesive zone model micromechanics-based formulation is implemented in the FE model in order to account for such aspects. The introduced enhanced degrading M-CZM, accounting for damage, friction, mechanical interlocking and dilatancy, is used to carry out sensitivity analyses and identification procedures on the FE models simulating the bar pull-out tests. The proposed modelling strategy is further validated by performing FE simulation of straight fibres pull-out tests.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Maracci.pdf
accesso aperto
Descrizione: Tesi_Maracci.pdf
Tipologia:
Tesi di dottorato
Licenza d'uso:
Creative commons
Dimensione
21.63 MB
Formato
Adobe PDF
|
21.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.