In brain ischemia, reduction of oxygen and substrates affects mitochondrial respiratory chain and aerobic metabolism culminating in ATP production impairment, ionic derangement and cell death. An exacerbation of the tissue damage frequently occurs during the restoration of blood flow and reoxygenation, giving rise to ischemia/reperfusion (I/R) injury. Energy dysfunction in cerebral metabolism may induce the utilization of alternative energy supplies, such as glutamate. Although glutamate has long been considered as a neurotoxin, it can also be used as a metabolic intermediate for the ATP synthesis thus improving mitochondrial activity. In this setting, both the Na+/Ca2+ exchanger (NCX) and the Na+ dependent Excitatory Amino Acid Transporters (EAATs) play a critical role. The aim of the present study is to investigate the role of NCX in the potential of glutamate to improve cell metabolism and survival of neuronal cells subjected to hypoxia/reoxygenation (H/R) injury. In SH-SY5Y neuroblastoma cells differentiated into neuron-like cells, H/R produced a significant cell damage, a drop of ATP cellular content and intracellular Ca2+ alterations. Exposure to glutamate at the onset of the reoxygenation phase induces an improvement of cell survival and a significant raise in intracellular ATP levels by stimulating mitochondrial oxidative phosphorylation. Furthermore, NCX reverse-mode is reduced in H/R cells and glutamate supplementation limits the H/R induced suppression of NCX activity. All the effects induced by glutamate exposure are lost when cells are transfected with small interfering RNA (siRNA) against NCX1 and EAAT3, suggesting that a functional interplay between these proteins is critically required for glutamate neuroprotection. Collectively, our results reveal the beneficial effect of glutamate in an in vitro model of H/R injury and focus on the essential role exerted by NCX1.

L’ischemia cerebrale è una patologia caratterizzata dalla ridotta o totale assenza di ossigeno e di substrati metabolici che influiscono sulla respirazione aerobia determinando un danno mitocondriale in particolare nella sintesi di ATP e nello squilibrio ionico culminando nella morte cellulare. L’entità del danno non deriva solo dall’insulto ischemico ma anche dai successivi fenomeni deleteri stimolati dal ripristino del flusso sanguigno e dei livelli di ossigeno. Lo squilibrio metabolico cerebrale induce l’utilizzo di fonti energetiche alternative come il glutammato. Sebbene in passato il glutammato è sempre stato considerato neurotossico, recenti studi hanno evidenziato come il glutammato possa svolgere il ruolo di intermediario metabolico stimolando la sintesi di ATP e migliorando l’attività mitocondriale, grazie al ruolo essenziale svolto dallo scambiatore Na+ /Ca2+ (NCX) e dai trasportatori del glutammato Na+ dipendenti (EAATs). In particolare, il ruolo solto da NCX nella neuroprotezione indotta da glutammato è stato studiato utilizzando un modello in vitro di ischemia cerebrale, cellule di neuroblastoma umano SH-SY5Y differenziate sottoposte ad ipossia/reossigenazione (H/R). In questo modello il danno indotto da H/R determina un aumento della mortalità cellulare, una riduzione dei livelli intracellulari di ATP e un’alterazione dei livelli di Ca2+ intracellulare. L’aggiunta di glutammato all’inizio della fase di reossigenazione determina un parziale recupero del danno inducendo un significativo aumento dei livelli di ATP. Inoltre, l’aggiunta di glutammato recupera parzialmente la riduzione dell’attività reverse-mode di NCX indotto da H/R. La trasfezione con i siRNA diretti contro NCX1 ed EAAT3 bloccano gli effetti protettivi del glutammato, confermando il ruolo essenziale svolto da NCX ed EAAT3 in questo pathway. In conclusione, i risultati ottenuti mostrano un nuovo ruolo svolto dal glutammato come “fattore di sopravvivenza” nel miglioramento del danno indotto da ipossia/reossigenazione, e che l’interazione tra NCX1 ed EAAT3 è fondamentale per permettere al glutammato di esplicare la sua funzione neuroprotettiva.

Involvement of Na+/Ca2+ Exchanger (NCX) in Glutamate-Induced Neuroprotection in SH-SY5Y Differentiated Cells Subjected to Hypoxia/Reoxygenation (H/R) Injury / Piccirillo, Silvia. - (2019 Mar 27).

Involvement of Na+/Ca2+ Exchanger (NCX) in Glutamate-Induced Neuroprotection in SH-SY5Y Differentiated Cells Subjected to Hypoxia/Reoxygenation (H/R) Injury

PICCIRILLO, SILVIA
2019-03-27

Abstract

In brain ischemia, reduction of oxygen and substrates affects mitochondrial respiratory chain and aerobic metabolism culminating in ATP production impairment, ionic derangement and cell death. An exacerbation of the tissue damage frequently occurs during the restoration of blood flow and reoxygenation, giving rise to ischemia/reperfusion (I/R) injury. Energy dysfunction in cerebral metabolism may induce the utilization of alternative energy supplies, such as glutamate. Although glutamate has long been considered as a neurotoxin, it can also be used as a metabolic intermediate for the ATP synthesis thus improving mitochondrial activity. In this setting, both the Na+/Ca2+ exchanger (NCX) and the Na+ dependent Excitatory Amino Acid Transporters (EAATs) play a critical role. The aim of the present study is to investigate the role of NCX in the potential of glutamate to improve cell metabolism and survival of neuronal cells subjected to hypoxia/reoxygenation (H/R) injury. In SH-SY5Y neuroblastoma cells differentiated into neuron-like cells, H/R produced a significant cell damage, a drop of ATP cellular content and intracellular Ca2+ alterations. Exposure to glutamate at the onset of the reoxygenation phase induces an improvement of cell survival and a significant raise in intracellular ATP levels by stimulating mitochondrial oxidative phosphorylation. Furthermore, NCX reverse-mode is reduced in H/R cells and glutamate supplementation limits the H/R induced suppression of NCX activity. All the effects induced by glutamate exposure are lost when cells are transfected with small interfering RNA (siRNA) against NCX1 and EAAT3, suggesting that a functional interplay between these proteins is critically required for glutamate neuroprotection. Collectively, our results reveal the beneficial effect of glutamate in an in vitro model of H/R injury and focus on the essential role exerted by NCX1.
27-mar-2019
L’ischemia cerebrale è una patologia caratterizzata dalla ridotta o totale assenza di ossigeno e di substrati metabolici che influiscono sulla respirazione aerobia determinando un danno mitocondriale in particolare nella sintesi di ATP e nello squilibrio ionico culminando nella morte cellulare. L’entità del danno non deriva solo dall’insulto ischemico ma anche dai successivi fenomeni deleteri stimolati dal ripristino del flusso sanguigno e dei livelli di ossigeno. Lo squilibrio metabolico cerebrale induce l’utilizzo di fonti energetiche alternative come il glutammato. Sebbene in passato il glutammato è sempre stato considerato neurotossico, recenti studi hanno evidenziato come il glutammato possa svolgere il ruolo di intermediario metabolico stimolando la sintesi di ATP e migliorando l’attività mitocondriale, grazie al ruolo essenziale svolto dallo scambiatore Na+ /Ca2+ (NCX) e dai trasportatori del glutammato Na+ dipendenti (EAATs). In particolare, il ruolo solto da NCX nella neuroprotezione indotta da glutammato è stato studiato utilizzando un modello in vitro di ischemia cerebrale, cellule di neuroblastoma umano SH-SY5Y differenziate sottoposte ad ipossia/reossigenazione (H/R). In questo modello il danno indotto da H/R determina un aumento della mortalità cellulare, una riduzione dei livelli intracellulari di ATP e un’alterazione dei livelli di Ca2+ intracellulare. L’aggiunta di glutammato all’inizio della fase di reossigenazione determina un parziale recupero del danno inducendo un significativo aumento dei livelli di ATP. Inoltre, l’aggiunta di glutammato recupera parzialmente la riduzione dell’attività reverse-mode di NCX indotto da H/R. La trasfezione con i siRNA diretti contro NCX1 ed EAAT3 bloccano gli effetti protettivi del glutammato, confermando il ruolo essenziale svolto da NCX ed EAAT3 in questo pathway. In conclusione, i risultati ottenuti mostrano un nuovo ruolo svolto dal glutammato come “fattore di sopravvivenza” nel miglioramento del danno indotto da ipossia/reossigenazione, e che l’interazione tra NCX1 ed EAAT3 è fondamentale per permettere al glutammato di esplicare la sua funzione neuroprotettiva.
Glutamate; Ischemia; NCX
File in questo prodotto:
File Dimensione Formato  
Tesi_Piccirillo.pdf

accesso aperto

Descrizione: Tesi_Piccirillo.pdf
Tipologia: Tesi di dottorato
Licenza d'uso: Creative commons
Dimensione 2.95 MB
Formato Adobe PDF
2.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/263512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact