The protein synthesis machinery includes protein factors that are highly conserved throughout evolution. Among these are EF-P in Bacteria and a/eIF5A in Archaea and Eukarya. Both, eIF5A and EF-P, are translation elongation factors which perform the essential task to rescue ribosomes from stalling during the synthesis of proteins bearing particular sequences such as polyproline stretches. Indispensable for this action is the characteristic and unique post-translation modification: hypusination in eIF5A and β- lysinylation in EF-P, which occurs in both proteins at a corresponding residue located in the N-terminal domain. In Eukarya, a specific lysine is modified in two enzymatic reactions catalyzed by deoxyhypusine synthase (DHS), that forms an intermediate called deoxyhypusine, and by deoxyhypusine hydroxylase (DOHH) which converts the intermediate into hypusine. However, the hypusination pathway in Archaea remains obscure because, despite the presence of the hypusinated protein, homology search of archaeal genomes indicates that only the first enzyme, DHS, is present. aIF5A genes are present in all archaeal genomes sequenced to date but information concerning the protein and its function are still fragmentary. To fill this gap, we have undertaken a structural and functional characterization of aIF5A and DHS from the crenarchaeal model organism Sulfolobus solfataricus. The present work shows that aIF5A in S. solfataricus is hypusinated, like its eukaryal counterpart. Moreover, the recombinant protein is a monomer in solution and forms a very stable complex with deoxyhypusine synthase (DHS), the first enzyme of the hypusination pathway. The enzyme forms a tetramer in solution and is able to modify its substrate in vitro resulting in deoxyhypusinated aIF5A, as in Eukarya. Thus, the first step towards hypusination in Sso appears to be conserved and similar to the eukaryotic one. Concerning aIF5A function, our data confirm an evolutionary conserved role of aIF5A as a translation factor, but they also suggest the hypothesis of a multitasking protein. We provide evidence that aIF5A in fact is endowed with an RNA-binding activity as well as an RNA degrading activity. We speculate that these two conflicting properties might be regulated by the post-translational modification status of the protein (hypusinated vs non-hypusinated) and/or by its interaction with different protein partners.

Il meccanismo della sintesi proteica include dei fattori di traduzione altamente conservati durante l'evoluzione. Tra questi ci sono EF-P nei Batteri e a/eIF5A negli Archea e negli Eucarioti. Entrambi, eIF5A e EF-P, sono fattori di allungamento della traduzione, i quali hanno la funzione essenziale di sbloccare i ribosomi dallo stallo durante la sintesi di proteine con particolari sequenze come i tratti di poli-prolina. Indispensabile per questa funzione è la caratteristica e unica modificazione post-traduzionale, chiamata ipusinazione in a/eIF5A e β-lisinilazione in EF-P, la quale è presente in entrambe le proteine in corrispondenza di un residuo situato nel dominio N-terminale. Negli eucarioti, uno specifico residuo di lisina viene modificato attraverso due reazioni enzimatiche catalizzate dalla deossiipusina sintasi (DHS), che forma un intermedio chiamato deossiipusina, e dalla deossiipusina idrossilasi (DOHH), che converte l'intermedio nel residuo ipusina maturo. Negli Archea il meccanismo di produzione dell’ipusina rimane oscuro poichè, sebbene la presenza della proteina in forma ipusinata, una ricerca delle proteine omologhe agli enzimi di modificazione nei genomi degli organismi archei indica che solamente il gene per il primo enzima è presente, il DHS. I geni che codificano per aIF5A sono presenti in tutti i genomi archei sequenziati finora, ma le informazioni riguardanti la proteina e la sua funzione sono ancora frammentarie. Per colmare questa lacuna, abbiamo intrapreso una caratterizzazione strutturale e funzionale delle proteine aIF5A e DHS, nell'organismo modello Crenarchaeota Sulfolobus solfataricus. Il presente lavoro mostra che aIF5A in S. solfataricus è ipusinata, come la sua controparte eucariotica. Inoltre, la proteina ricombinante si presenta come un monomero in soluzione e forma un complesso molto stabile con la deossiipusina sintasi (DHS), il primo enzima della reazione di ipusinazione. L'enzima si assembla a formare un tetramero in soluzione ed è in grado di modificare il suo substrato in vitro con conseguente formazione dell’intermedio di aIF5A, la deossiipusina, come avviene negli eucarioti. Quindi, il primo step di ipusinazione in Sso sembra essere conservato e molto simile a quello eucariotico. Per quanto riguarda la funzione di aIF5A, i nostri dati confermano un ruolo conservato di aIF5A come fattore di traduzione, ma suggeriscono anche l'ipotesi di una proteina multifunzionale. In questo lavoro abbiamo infatti dimostrato che la proteina aIF5A è capace da un lato di legare molecole di RNA e dall’altro di degradare l'RNA. La nostra ipotesi è che queste due funzioni opposte possano essere regolate dalla modificazione post-traduzionale della proteina (ipusinata vs non ipusinata) e dalla sua interazione con differenti partner proteici.

Characterization of ArchaealP rotein aIF5A: A Multifunctional Translation Factor / Romagnoli, Alice. - (2019 Mar 05).

Characterization of ArchaealP rotein aIF5A: A Multifunctional Translation Factor

ROMAGNOLI, ALICE
2019-03-05

Abstract

The protein synthesis machinery includes protein factors that are highly conserved throughout evolution. Among these are EF-P in Bacteria and a/eIF5A in Archaea and Eukarya. Both, eIF5A and EF-P, are translation elongation factors which perform the essential task to rescue ribosomes from stalling during the synthesis of proteins bearing particular sequences such as polyproline stretches. Indispensable for this action is the characteristic and unique post-translation modification: hypusination in eIF5A and β- lysinylation in EF-P, which occurs in both proteins at a corresponding residue located in the N-terminal domain. In Eukarya, a specific lysine is modified in two enzymatic reactions catalyzed by deoxyhypusine synthase (DHS), that forms an intermediate called deoxyhypusine, and by deoxyhypusine hydroxylase (DOHH) which converts the intermediate into hypusine. However, the hypusination pathway in Archaea remains obscure because, despite the presence of the hypusinated protein, homology search of archaeal genomes indicates that only the first enzyme, DHS, is present. aIF5A genes are present in all archaeal genomes sequenced to date but information concerning the protein and its function are still fragmentary. To fill this gap, we have undertaken a structural and functional characterization of aIF5A and DHS from the crenarchaeal model organism Sulfolobus solfataricus. The present work shows that aIF5A in S. solfataricus is hypusinated, like its eukaryal counterpart. Moreover, the recombinant protein is a monomer in solution and forms a very stable complex with deoxyhypusine synthase (DHS), the first enzyme of the hypusination pathway. The enzyme forms a tetramer in solution and is able to modify its substrate in vitro resulting in deoxyhypusinated aIF5A, as in Eukarya. Thus, the first step towards hypusination in Sso appears to be conserved and similar to the eukaryotic one. Concerning aIF5A function, our data confirm an evolutionary conserved role of aIF5A as a translation factor, but they also suggest the hypothesis of a multitasking protein. We provide evidence that aIF5A in fact is endowed with an RNA-binding activity as well as an RNA degrading activity. We speculate that these two conflicting properties might be regulated by the post-translational modification status of the protein (hypusinated vs non-hypusinated) and/or by its interaction with different protein partners.
5-mar-2019
Il meccanismo della sintesi proteica include dei fattori di traduzione altamente conservati durante l'evoluzione. Tra questi ci sono EF-P nei Batteri e a/eIF5A negli Archea e negli Eucarioti. Entrambi, eIF5A e EF-P, sono fattori di allungamento della traduzione, i quali hanno la funzione essenziale di sbloccare i ribosomi dallo stallo durante la sintesi di proteine con particolari sequenze come i tratti di poli-prolina. Indispensabile per questa funzione è la caratteristica e unica modificazione post-traduzionale, chiamata ipusinazione in a/eIF5A e β-lisinilazione in EF-P, la quale è presente in entrambe le proteine in corrispondenza di un residuo situato nel dominio N-terminale. Negli eucarioti, uno specifico residuo di lisina viene modificato attraverso due reazioni enzimatiche catalizzate dalla deossiipusina sintasi (DHS), che forma un intermedio chiamato deossiipusina, e dalla deossiipusina idrossilasi (DOHH), che converte l'intermedio nel residuo ipusina maturo. Negli Archea il meccanismo di produzione dell’ipusina rimane oscuro poichè, sebbene la presenza della proteina in forma ipusinata, una ricerca delle proteine omologhe agli enzimi di modificazione nei genomi degli organismi archei indica che solamente il gene per il primo enzima è presente, il DHS. I geni che codificano per aIF5A sono presenti in tutti i genomi archei sequenziati finora, ma le informazioni riguardanti la proteina e la sua funzione sono ancora frammentarie. Per colmare questa lacuna, abbiamo intrapreso una caratterizzazione strutturale e funzionale delle proteine aIF5A e DHS, nell'organismo modello Crenarchaeota Sulfolobus solfataricus. Il presente lavoro mostra che aIF5A in S. solfataricus è ipusinata, come la sua controparte eucariotica. Inoltre, la proteina ricombinante si presenta come un monomero in soluzione e forma un complesso molto stabile con la deossiipusina sintasi (DHS), il primo enzima della reazione di ipusinazione. L'enzima si assembla a formare un tetramero in soluzione ed è in grado di modificare il suo substrato in vitro con conseguente formazione dell’intermedio di aIF5A, la deossiipusina, come avviene negli eucarioti. Quindi, il primo step di ipusinazione in Sso sembra essere conservato e molto simile a quello eucariotico. Per quanto riguarda la funzione di aIF5A, i nostri dati confermano un ruolo conservato di aIF5A come fattore di traduzione, ma suggeriscono anche l'ipotesi di una proteina multifunzionale. In questo lavoro abbiamo infatti dimostrato che la proteina aIF5A è capace da un lato di legare molecole di RNA e dall’altro di degradare l'RNA. La nostra ipotesi è che queste due funzioni opposte possano essere regolate dalla modificazione post-traduzionale della proteina (ipusinata vs non ipusinata) e dalla sua interazione con differenti partner proteici.
aIF5A; hypusine; hypusination; translation factor; Sulfolobus solfataricus; Deoxyhypusine synthase; post-translational modification; Archaea
aIF5A; ipusina; ipusinazione; fattore di traduzione; Sulfolobus solfataricus; Deossiipusina sintasi; modificazione post-traduzionale; Archea
File in questo prodotto:
File Dimensione Formato  
Tesi_Romagnoli.pdf

Open Access dal 06/09/2020

Descrizione: Tesi_Romagnoli.pdf
Tipologia: Tesi di dottorato
Licenza d'uso: Creative commons
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/263496
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact