We consider the Cauchy-problem for the following parabolic equation: \begin{equation*} \displaystyle u_t = \Delta u+ f(u,|x|), \end{equation*} where $x \in \RR^n$, $n >2$, and $f=f(u,|x|)$ is either critical or supercritical with respect to the Joseph-Lundgren exponent. In particular, we improve and generalize some known results concerning stability and weak asymptotic stability of positive Ground States.
Titolo: | Stability of ground states for a nonlinear parabolic equation |
Autori: | |
Data di pubblicazione: | 2018 |
Rivista: | |
Abstract: | We consider the Cauchy-problem for the following parabolic equation: \begin{equation*} \displaystyle u_t = \Delta u+ f(u,|x|), \end{equation*} where $x \in \RR^n$, $n >2$, and $f=f(u,|x|)$ is either critical or supercritical with respect to the Joseph-Lundgren exponent. In particular, we improve and generalize some known results concerning stability and weak asymptotic stability of positive Ground States. |
Handle: | http://hdl.handle.net/11566/262523 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.