Measuring and identifying human behaviours are key aspects to support the simulation processes that have a significant role in buildings’ (and cities’) design and management. In fact, layout assessments and control strategies are deeply influenced by the prediction of building performance. However, the missing inclusion of the human component within the building-related processes leads to large discrepancies between actual and simulated outcomes. This paper presents a methodology for measuring specific human behaviours in buildings and developing human-in-the-loop design applied to retrofit and renovation interventions. The framework concerns the detailed building monitoring and the development of stochastic and data-driven behavioural models and their coupling within energy simulation software using a cosimulation approach. The methodology has been applied to a real case study to illustrate its applicability. A one-year monitoring has been carried out through a dedicated sensor network for the data recording and to identify the triggers of users’ actions. Then, two stochastic behavioural models (i.e., one for predicting light switching and one for window opening) have been developed (using the measured data) and coupled within the IESVE simulation software. A simplified energy model of the case study has been created to test the behavioural approach. The outcomes highlight that the behavioural approach provides more accurate results than a standard one when compared to real profiles. The adoption of behavioural profiles leads to a reduction of the discrepancy with respect to real profiles up to 58% and 26% when simulating light switching and ventilation, respectively, in comparison to standard profiles. Using data-driven techniques to include the human component in the simulation processes would lead to better predictions both in terms of energy use and occupants’ comfort sensations. These aspects can be also included in building control processes (e.g., building management systems) to enhance the environmental and system management.

Measuring Occupants’ Behaviour for Buildings’ Dynamic Cosimulation / Naspi, Federica; Arnesano, Marco; Stazi, Francesca; D’Orazio, Marco; Revel, Gian Marco. - In: JOURNAL OF SENSORS. - ISSN 1687-725X. - ELETTRONICO. - 2018:(2018), pp. 1-17. [10.1155/2018/2756542]

Measuring Occupants’ Behaviour for Buildings’ Dynamic Cosimulation

Naspi, Federica;Arnesano, Marco
;
Stazi, Francesca;D’Orazio, Marco;Revel, Gian Marco
2018-01-01

Abstract

Measuring and identifying human behaviours are key aspects to support the simulation processes that have a significant role in buildings’ (and cities’) design and management. In fact, layout assessments and control strategies are deeply influenced by the prediction of building performance. However, the missing inclusion of the human component within the building-related processes leads to large discrepancies between actual and simulated outcomes. This paper presents a methodology for measuring specific human behaviours in buildings and developing human-in-the-loop design applied to retrofit and renovation interventions. The framework concerns the detailed building monitoring and the development of stochastic and data-driven behavioural models and their coupling within energy simulation software using a cosimulation approach. The methodology has been applied to a real case study to illustrate its applicability. A one-year monitoring has been carried out through a dedicated sensor network for the data recording and to identify the triggers of users’ actions. Then, two stochastic behavioural models (i.e., one for predicting light switching and one for window opening) have been developed (using the measured data) and coupled within the IESVE simulation software. A simplified energy model of the case study has been created to test the behavioural approach. The outcomes highlight that the behavioural approach provides more accurate results than a standard one when compared to real profiles. The adoption of behavioural profiles leads to a reduction of the discrepancy with respect to real profiles up to 58% and 26% when simulating light switching and ventilation, respectively, in comparison to standard profiles. Using data-driven techniques to include the human component in the simulation processes would lead to better predictions both in terms of energy use and occupants’ comfort sensations. These aspects can be also included in building control processes (e.g., building management systems) to enhance the environmental and system management.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/262245
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact