Soil organic matter (SOM) protection, stability and long-term accumulation are controlled by several factors, including sorption onto mineral surfaces. Iron (Fe) has been suggested as a key regulator of SOM stability, both in acidic conditions, where Fe(III) is soluble, and in near-neutral pH environments, where it precipitates as Fe(III) (hydr)oxides. The present study aimed to probe, by sorption/desorption experiments in which Fe was added to the system, the mechanisms controlling Fe(III)-mediated organic carbon (C) stabilization; fine silt and clay (FSi+Cl) and fine sand (FSa) SOM fractions of three soils under different land uses were tested. Fe(III) addition caused a decrease in the organic C remaining in solution after reaction, indicating an Fe-mediated organic C stabilization effect. This effect was two times larger for FSa than for FSi+Cl, the former fraction being characterized by both low specific surface area and high organic C content. The organic C retained in the solid phase after Fe-mediated stabilization has relatively low sensitivity to desorption. Moreover, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy indicated that Fe-mediated organic C stabilization can be mainly ascribed to the formation of complexes between carbohydrate OH functional groups and Fe oxides. These results demonstrate that the binding of labile SOM compounds to Fe(III) contributes to its preservation, and that the mechanisms involved (flocculation vs. coating) depend on the size fractions.

The role of soil organic matter in Fe(III) stabilization in two size fractions having opposite features / Giannetta, Beatrice; Zaccone, Claudio; Plaza, César; Siebecker, Matthew G.; Rovira, Pere; Vischetti, Costantino; Sparks, Donald L.. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - STAMPA. - 653:(2019), pp. 667-674. [10.1016/j.scitotenv.2018.10.361]

The role of soil organic matter in Fe(III) stabilization in two size fractions having opposite features

Beatrice Giannetta;Claudio Zaccone;Costantino Vischetti;
2019-01-01

Abstract

Soil organic matter (SOM) protection, stability and long-term accumulation are controlled by several factors, including sorption onto mineral surfaces. Iron (Fe) has been suggested as a key regulator of SOM stability, both in acidic conditions, where Fe(III) is soluble, and in near-neutral pH environments, where it precipitates as Fe(III) (hydr)oxides. The present study aimed to probe, by sorption/desorption experiments in which Fe was added to the system, the mechanisms controlling Fe(III)-mediated organic carbon (C) stabilization; fine silt and clay (FSi+Cl) and fine sand (FSa) SOM fractions of three soils under different land uses were tested. Fe(III) addition caused a decrease in the organic C remaining in solution after reaction, indicating an Fe-mediated organic C stabilization effect. This effect was two times larger for FSa than for FSi+Cl, the former fraction being characterized by both low specific surface area and high organic C content. The organic C retained in the solid phase after Fe-mediated stabilization has relatively low sensitivity to desorption. Moreover, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy indicated that Fe-mediated organic C stabilization can be mainly ascribed to the formation of complexes between carbohydrate OH functional groups and Fe oxides. These results demonstrate that the binding of labile SOM compounds to Fe(III) contributes to its preservation, and that the mechanisms involved (flocculation vs. coating) depend on the size fractions.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/261802
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
social impact