Novel glasses and glass ceramics with compositions corresponding to stoichiometric lithium and barium dis- ilicates and doped with different combinations of Ce3+, Eu2+,3+, Tb3+, and Dy3+ have been fabricated and studied as prospective light converters for white high-power light emitting diodes and laser diodes. Spatially resolved photoluminescence spectroscopy and structural analysis have been employed. The emission spectra and CIE color coordinates of these materials evidence their good prospective as phosphors for white light sources. Structural analysis proves a high level of crystallization of the ceramics fabricated by annealing the glasses, while spectroscopic study revealed the influence of crystallization on the emission properties of this system. The results show a high potential of these materials be exploited as temperature-resistant phosphors in high-power white light emitting diodes.

Barium and lithium silicate glass ceramics doped with rare earth ions for white LEDs / Trusova, E.; Vaitkevičius, A.; Tratsiak, Y.; Korjik, M.; Mengucci, P.; Rinaldi, D.; Montalto, L.; Marciulionyte, V.; Tamulaitis, G.. - In: OPTICAL MATERIALS. - ISSN 0925-3467. - STAMPA. - 84:(2018), pp. 459-465. [10.1016/j.optmat.2018.07.030]

Barium and lithium silicate glass ceramics doped with rare earth ions for white LEDs

P. Mengucci;D. Rinaldi;L. Montalto;
2018-01-01

Abstract

Novel glasses and glass ceramics with compositions corresponding to stoichiometric lithium and barium dis- ilicates and doped with different combinations of Ce3+, Eu2+,3+, Tb3+, and Dy3+ have been fabricated and studied as prospective light converters for white high-power light emitting diodes and laser diodes. Spatially resolved photoluminescence spectroscopy and structural analysis have been employed. The emission spectra and CIE color coordinates of these materials evidence their good prospective as phosphors for white light sources. Structural analysis proves a high level of crystallization of the ceramics fabricated by annealing the glasses, while spectroscopic study revealed the influence of crystallization on the emission properties of this system. The results show a high potential of these materials be exploited as temperature-resistant phosphors in high-power white light emitting diodes.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/261546
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact