We investigate strongly nonlinear differential equations of the type (Phi(k(t)u′(t)))′=f(t,u(t),u′(t)),a.e.on[0,T],where Phi is a strictly increasing homeomorphism and the nonnegative functionkmay vanish on a set of measure zero. By using the upper and lower solutions method,we prove existence results for the Dirichlet problem associated with the above equation, as well as for different boundary conditions involving the function k. Our existence results require a weak form of a Wintner–Nagumo growth condition.

Boundary value problems for singular second order equations

Calamai, Alessandro;Marcelli, Cristina;Papalini, Francesca
2018

Abstract

We investigate strongly nonlinear differential equations of the type (Phi(k(t)u′(t)))′=f(t,u(t),u′(t)),a.e.on[0,T],where Phi is a strictly increasing homeomorphism and the nonnegative functionkmay vanish on a set of measure zero. By using the upper and lower solutions method,we prove existence results for the Dirichlet problem associated with the above equation, as well as for different boundary conditions involving the function k. Our existence results require a weak form of a Wintner–Nagumo growth condition.
File in questo prodotto:
File Dimensione Formato  
2018-BVP.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Non definita
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/259810
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact