A remarkable advantage of clay tiles roof coverings in hot climates is the realization of a ventilated air layer between them and the roofing underlay that allows a natural and forced convection through the tiles joints and the channel from eaves to ridge, thus cooling the roof materials. However recently, in many countries, regulatory developments on buildings energy efficiency or buildings sustainability certification protocols are increasingly encouraging the use of alternative strategies, with the aim of reducing the urban heat island (UHI) effect and the buildings’ cooling consumptions. Among them, the use of ‘cool’ materials for roof covering. These mandatory or voluntary measures de facto push the construction products market towards specific directions, risking penalizing traditional components such as clay tiles. This article reports the results of experimental and numerical activities carried out in order to extensively characterize the optical properties of clay tile materials and investigate their impact, also coupled with above sheathing ventilation, on the thermal performance of a ventilated roof under warm-temperate climate. In the first phase of the research, the main optical properties of over 30 different clay products have been experimentally characterized in order to get a clear and extensive picture of such properties for the materials spread in the market. In a second phase, starting from the thermal data collected on an experimental real-scale building, a dynamic energy analysis tool was calibrated and used to perform simulations by varying the optical properties of the roof covering thus assessing the impact on the roof temperatures, also in comparison to a clay tiles roof. The results underline that the use of the above sheathing ventilation obtained through clay tiles is an effective strategy to reduce roof temperatures, even if covering materials are not qualified as ‘cool’, thus impacting on both UHI and indoor comfort.
Optical properties of traditional clay tiles for ventilated roofs and implication on roof thermal performance / Di Giuseppe, Elisa; Sabbatini, Simona; Cozzolino, Nikita; Stipa, Pierluigi; D’Orazio, Marco. - In: JOURNAL OF BUILDING PHYSICS. - ISSN 1744-2591. - ELETTRONICO. - 42:4(2019), pp. 484-505. [10.1177/1744259118772265]
Optical properties of traditional clay tiles for ventilated roofs and implication on roof thermal performance
Di Giuseppe, Elisa
;Sabbatini, Simona;Stipa, Pierluigi;D’Orazio, Marco
2019-01-01
Abstract
A remarkable advantage of clay tiles roof coverings in hot climates is the realization of a ventilated air layer between them and the roofing underlay that allows a natural and forced convection through the tiles joints and the channel from eaves to ridge, thus cooling the roof materials. However recently, in many countries, regulatory developments on buildings energy efficiency or buildings sustainability certification protocols are increasingly encouraging the use of alternative strategies, with the aim of reducing the urban heat island (UHI) effect and the buildings’ cooling consumptions. Among them, the use of ‘cool’ materials for roof covering. These mandatory or voluntary measures de facto push the construction products market towards specific directions, risking penalizing traditional components such as clay tiles. This article reports the results of experimental and numerical activities carried out in order to extensively characterize the optical properties of clay tile materials and investigate their impact, also coupled with above sheathing ventilation, on the thermal performance of a ventilated roof under warm-temperate climate. In the first phase of the research, the main optical properties of over 30 different clay products have been experimentally characterized in order to get a clear and extensive picture of such properties for the materials spread in the market. In a second phase, starting from the thermal data collected on an experimental real-scale building, a dynamic energy analysis tool was calibrated and used to perform simulations by varying the optical properties of the roof covering thus assessing the impact on the roof temperatures, also in comparison to a clay tiles roof. The results underline that the use of the above sheathing ventilation obtained through clay tiles is an effective strategy to reduce roof temperatures, even if covering materials are not qualified as ‘cool’, thus impacting on both UHI and indoor comfort.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.