Warm mix asphalt (WMA) has become very popular in asphalt pavement construction because it allows reducing both energy consumptions and carbon emissions.WMA can be obtained by using different types of additives and can be produced, applied, and compacted at temperatures 20–40 °C lower than hot mix asphalt. WMA additives allow reducing the working temperatures without compromising the final performance of the asphalt concrete. Many WMA additives are available on the worldwide market and some of them reduce the viscosity of asphalts binder (organic additives or foam) whereas others do not act on this sense (chemical additives). This study focuses on the effect of chemical additives on the performance of asphalt binders for WMA production. To this purpose, a neat bitumen, a polymer modified bitumen (PMB) and two different chemical additives were selected. All the binders were characterized through conventional tests, DSR, MSCR, FTIR and microscopic analysis. The result clearly showed that the influence of the chemical additives on the neat bitumen is negligible or non-existent. On the contrary, significant changes were observed in the modifiedbitumen properties. Specifically, chemical additives reduce the viscosity temperature susceptibility of PMBs in the temperature range between 80 and 140 °C, increase the rutting resistance potential and the elastic response of PMBs at high temperatures. Moreover, a morphological inspection supported the modifications observed in the rheological properties of PMBs.

Effect of warm mix asphalt chemical additives on the mechanical performance of asphalt binders / Ferrotti, Gilda; Davide, Ragni; Lu, Xiaohu; Canestrari, Francesco. - In: MATERIALS AND STRUCTURES. - ISSN 1359-5997. - ELETTRONICO. - 50:226(2017), pp. 1-13. [10.1617/s11527-017-1096-5]

Effect of warm mix asphalt chemical additives on the mechanical performance of asphalt binders

Gilda Ferrotti
;
Francesco Canestrari
2017-01-01

Abstract

Warm mix asphalt (WMA) has become very popular in asphalt pavement construction because it allows reducing both energy consumptions and carbon emissions.WMA can be obtained by using different types of additives and can be produced, applied, and compacted at temperatures 20–40 °C lower than hot mix asphalt. WMA additives allow reducing the working temperatures without compromising the final performance of the asphalt concrete. Many WMA additives are available on the worldwide market and some of them reduce the viscosity of asphalts binder (organic additives or foam) whereas others do not act on this sense (chemical additives). This study focuses on the effect of chemical additives on the performance of asphalt binders for WMA production. To this purpose, a neat bitumen, a polymer modified bitumen (PMB) and two different chemical additives were selected. All the binders were characterized through conventional tests, DSR, MSCR, FTIR and microscopic analysis. The result clearly showed that the influence of the chemical additives on the neat bitumen is negligible or non-existent. On the contrary, significant changes were observed in the modifiedbitumen properties. Specifically, chemical additives reduce the viscosity temperature susceptibility of PMBs in the temperature range between 80 and 140 °C, increase the rutting resistance potential and the elastic response of PMBs at high temperatures. Moreover, a morphological inspection supported the modifications observed in the rheological properties of PMBs.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/254765
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact