Surface ocean bubble-bursting generates aerosols composed of microscopic salt-water droplets, enriched in marine organic matter. The organic fraction profoundly influences aerosols’ properties, by scattering solar radiations and nucleating water particles. Still little is known on the biochemical and microbiological composition of these organic particles. In the present study, we experimentally simulated the bursting of bubbles at the seawater surface of the North-Eastern Atlantic Ocean, analysing the organic materials and the diversity of the bacteria in the source-seawaters and in the produced aerosols. We show that, compared with seawater, the sub-micron aerosol particles were highly enriched in organic matter (up to 140,000x for lipids, 120,000x for proteins and 100,000x for carbohydrates). Also DNA, viruses and prokaryotes were significantly enriched (up to 30,000, 250 and 45x, respectively). The relative importance of the organic components in the aerosol did not reflect those in the seawater, suggesting their selective transfer. Molecular analyses indicate the presence of selective transfers also for bacterial genotypes, highlighting higher contribution of less abundant seawater bacterial taxa to the marine aerosol. Overall, our results open new perspectives in the study of microbial dispersal through marine aerosol and provide new insights for a better understanding of climate-regulating processes of global relevance.

Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach / Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; LO MARTIRE, Marco; Greco, Silvestro; Cristina Facchini, Maria; Rinaldi, Matteo; O’Dowd, Colin; Ceburnis, Darius; Danovaro, Roberto. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 7:1(2017), pp. 1-10. [10.1038/s41598-017-10563-z]

Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach

Eugenio Rastelli;Cinzia Corinaldesi;Antonio Dell’Anno;Marco Lo Martire;Roberto Danovaro
2017-01-01

Abstract

Surface ocean bubble-bursting generates aerosols composed of microscopic salt-water droplets, enriched in marine organic matter. The organic fraction profoundly influences aerosols’ properties, by scattering solar radiations and nucleating water particles. Still little is known on the biochemical and microbiological composition of these organic particles. In the present study, we experimentally simulated the bursting of bubbles at the seawater surface of the North-Eastern Atlantic Ocean, analysing the organic materials and the diversity of the bacteria in the source-seawaters and in the produced aerosols. We show that, compared with seawater, the sub-micron aerosol particles were highly enriched in organic matter (up to 140,000x for lipids, 120,000x for proteins and 100,000x for carbohydrates). Also DNA, viruses and prokaryotes were significantly enriched (up to 30,000, 250 and 45x, respectively). The relative importance of the organic components in the aerosol did not reflect those in the seawater, suggesting their selective transfer. Molecular analyses indicate the presence of selective transfers also for bacterial genotypes, highlighting higher contribution of less abundant seawater bacterial taxa to the marine aerosol. Overall, our results open new perspectives in the study of microbial dispersal through marine aerosol and provide new insights for a better understanding of climate-regulating processes of global relevance.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/254302
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 69
social impact