In this paper we prove a new estimate of the threshold wave speed for traveling wavefronts of the reaction-diffusion-convection equations of the type \[v_\tau + h(v) v_x= \left[ D(v)v_x \right]_x + f(v) \] where h is a convective term, D is a positive (potentially degenerate) diffusive term and f stands for a monostable reaction term.

A new estimate on the minimal wave speed for travelling fronts in reaction–diffusion-convection equations / Marcelli, Cristina; Papalini, Francesca. - In: ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS. - ISSN 1417-3875. - ELETTRONICO. - 2018:10(2018), pp. 1-13.

A new estimate on the minimal wave speed for travelling fronts in reaction–diffusion-convection equations

Cristina Marcelli
;
Francesca Papalini
2018-01-01

Abstract

In this paper we prove a new estimate of the threshold wave speed for traveling wavefronts of the reaction-diffusion-convection equations of the type \[v_\tau + h(v) v_x= \left[ D(v)v_x \right]_x + f(v) \] where h is a convective term, D is a positive (potentially degenerate) diffusive term and f stands for a monostable reaction term.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/253054
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact