The feasibility of an electromagnetic sensor to assist the autonomous walking of visually impaired and blind users is demonstrated in this paper. It is known that people affected by visual diseases usually walk assisted by some supports, among which the white cane is the most common. Our idea consists in applying a microwave radar on the traditional white cane making aware the user about the presence of an obstacle in a wider and safer range. Compared to the already existing Electronic Travel Aids devices, the proposed system exhibits better performance, noise tolerance and reduced dimensions. In the following, the latest developments of this research activity are presented, with special concern for the miniaturization of circuit board and antennas. A laboratory prototype has been designed and realized and the first test results of obstacle detection are hereby shown to demonstrate the effectiveness of the system

An Electromagnetic Sensor Prototype to Assist Visually Impaired and Blind People in Autonomous Walking / Cardillo, E.; Di Mattia, V.; Manfredi, G.; Russo, P.; De Leo, A.; Caddemi, A.; Cerri, G.. - In: IEEE SENSORS JOURNAL. - ISSN 1530-437X. - ELETTRONICO. - 18:6(2018), pp. 2568-2576. [10.1109/JSEN.2018.2795046]

An Electromagnetic Sensor Prototype to Assist Visually Impaired and Blind People in Autonomous Walking

Di Mattia, V.;Russo, P.;De Leo, A.;Cerri, G.
2018-01-01

Abstract

The feasibility of an electromagnetic sensor to assist the autonomous walking of visually impaired and blind users is demonstrated in this paper. It is known that people affected by visual diseases usually walk assisted by some supports, among which the white cane is the most common. Our idea consists in applying a microwave radar on the traditional white cane making aware the user about the presence of an obstacle in a wider and safer range. Compared to the already existing Electronic Travel Aids devices, the proposed system exhibits better performance, noise tolerance and reduced dimensions. In the following, the latest developments of this research activity are presented, with special concern for the miniaturization of circuit board and antennas. A laboratory prototype has been designed and realized and the first test results of obstacle detection are hereby shown to demonstrate the effectiveness of the system
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/252607
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 42
social impact