The aim of this work is to demonstrate the applicability of innovative materials, such as Glass Fibre Reinforced Polymer (GFRP) industrialized components (profiles), structural adhesives, for the realization of curtain walls with high mechanical and thermal performances and low environmental impact. This objective with the “Technological Simplification” principle is verified. This latter is the guiding principle to the base of the search and experimental tests carried out by the research group. The teamwork coordinator and patent inventor is Prof P.Munafò, with him I developed a “System for the realization of building façade” (n. 102015000087569). The “Technological Simplification” principle allows the building components realization with high performance and easy to assemble, by using a limited number of pieces. All this involves lower energy consumption in the production, assembly, maintenance and disposal phases. For this reason, the construction element can be considered environmentally sustainable. In this thesis, the feasibility of the constructive system for the realization of building façade, through the experimental tests and component life cycle analysis, is verified. The components and materials properties both in laboratory conditions and after different types of ageing conditions (durability) are tested. The interaction between building components and environment, from the production to ultimate disposal (LCA - Life Cycle Assessment) are analysed. The methods used were mostly of the experimental type. The material mechanical properties both in environmental conditions and in different types of ageing conditions were analysed, such as continuous condensation (ISO 6270-2) and UV irradiation (ASTM D904–99). Additional test with combined artificial ageing (climatic chamber and exposure to UV radiation - Tcc+Tuv – and the other way around - Tuv+Tcc) were tested. The numerical and analytical studies were carried out, with the objective to check and validate the results obtained through experimental tests. The main outcome was the validation of the patents basic ideas, which is a key point in the industrialization process of the construction elements (Structural Member). The aim of this work is to demonstrate the feasibility of the use of pultruded Glass Fiber Reinforced Polymers (GFRP) profiles, adhesively joined with other materials (i.e. steel), in the construction sector. The objective is both to reduce the GFRP profiles deformation under loading conditions, and to avoid the brittle fractures that could occur in bolted joints. In the building engineering field, in fact, these issues (deformations and brittle fractures) prevent the use of pultruded materials. In the research activity, the possibility to adhesively join a steel laminate on the pultruded profile mullion for curtain walls was verified. The containment of the deformations and the prevention of brittle fractures in the bolted joint were checked, in order to verify the pultruded curtain wall feasibility, both constructively and for its structural and energy performances. Experimental results, in fact, demonstrated that the use of GFRP profiles, bonded with structural adhesives and combined with steel, is successful on curtain walls, even when they are exposed to adverse environmental conditions. The feasibility of the curtain wall implementation with high performance is verified.

L’obiettivo del presente lavoro è verificare l’applicabilità di materiali innovativi, quali compositi (GFRP - Glass Fibre Reinforced Polymer) e colle strutturali, per la realizzazione di facciate continue ad alte prestazioni meccaniche e termiche e a basso impatto ambientale. Tale obiettivo è stato verificato anche tramite l’applicazione del principio della “Semplificazione tecnologica” che rappresenta il filo conduttore alla base dello studio e delle sperimentazioni svolte dal gruppo di ricerca, coordinato dal Prof. P.Munafò, che ha sviluppato il brevetto “Sistema per la realizzazione di facciate di edifici” (n.102015000087569) di cui il Professore è inventore. Con tale filosofia di approccio è possibile realizzare componenti edilizi altamente prestazionali e semplici nella loro concezione essendo costituiti con un numero limitato di pezzi implicando così un minor consumo di energia nella produzione, assemblaggio, manutenzione e smaltimento del prodotto, classificandolo quindi come eco-sostenibile. In questa tesi viene verificata la fattibilità di un sistema costruttivo per la realizzazione di facciate continue per edifici studiando preventivamente, con test sperimentali e analisi sul ciclo di vita dei componenti, le prestazioni meccaniche dei profili in GFRP e degli adesivi strutturali in condizioni di invecchiamento accelerato (durabilità) e non, e l’interazione del componente edilizio con l’ambiente, dalla produzione alla dismissione finale (LCA - Life Cycle Assessment). I metodi principalmente usati in questo studio sono di tipo sperimentale al fine di testare le proprietà meccaniche dei materiali, in condizioni ambientali e dopo invecchiamento (accelerato in camera climatica ad elevata umidità e temperatura (ISO 6270-2) e sotto esposizione ai raggi UV (ASTM D904–99)). In seguito ai singoli test di invecchiamento precedentemente citati, sono stati condotti ulteriori sperimentazioni riguardanti il trattamento di campioni a condizioni di invecchiamento combinato (camera climatica ed esposizione ai raggi UV - Tcc+Tuv - e viceversa - Tuv+Tcc -). Al fine di validare i risultati ottenuti dalle sperimentazioni effettuate sono stati eseguiti test numerici e analitici. Il risultato più significativo è dato proprio dalla validazione dell’idea brevettuale dimostrando la possibilità di industrializzare componenti (facciate continue) che utilizzano tale materiale composito (pultruso - GFRP), mediante l’accoppiamento a materiali come l’acciaio che possono conferire al componente alte prestazioni meccaniche, soprattutto per quanto riguarda il contenimento delle deformazioni sotto carico. Le soluzioni tecniche studiate inoltre evitano il problema della rottura fragile delle giunzioni bullonate che è uno dei problemi che riguardano le giunzioni di questo tipo su profili in pultruso. La deformabilità e la rottura fragile delle giunzioni bullonate dei profili in pultruso ne hanno limitato l’utilizzo nel settore dell’ingegneria edile per la realizzazione di facciate continue specie di grandi dimensioni. A tal fine l’attività di ricerca è stata prevalentemente incentrata a verificare la possibilità di inserire nei montati in pultruso di tali facciate, una lamina d’acciaio incollata per contenere la deformazione e per migliorare la qualità della giunzione bullonata in modo da evitare rotture di tipo fragile raggiunto il carico di collasso. Le risultanze dei test sperimentali condotti dimostrano le buone performance del sistema ibrido GFRP-acciaio anche in seguito all’esposizione a differenti condizioni di invecchiamento artificiale e verificano la fattibilità di realizzazione di una facciata continua ad alte prestazioni meccaniche e termiche.

Applications of innovative materials, GFRP and structural adhesives, for the curtain wall: technological and performance verification / Terlizzi, Vanessa. - (2018 Mar 22).

Applications of innovative materials, GFRP and structural adhesives, for the curtain wall: technological and performance verification.

TERLIZZI, VANESSA
2018-03-22

Abstract

The aim of this work is to demonstrate the applicability of innovative materials, such as Glass Fibre Reinforced Polymer (GFRP) industrialized components (profiles), structural adhesives, for the realization of curtain walls with high mechanical and thermal performances and low environmental impact. This objective with the “Technological Simplification” principle is verified. This latter is the guiding principle to the base of the search and experimental tests carried out by the research group. The teamwork coordinator and patent inventor is Prof P.Munafò, with him I developed a “System for the realization of building façade” (n. 102015000087569). The “Technological Simplification” principle allows the building components realization with high performance and easy to assemble, by using a limited number of pieces. All this involves lower energy consumption in the production, assembly, maintenance and disposal phases. For this reason, the construction element can be considered environmentally sustainable. In this thesis, the feasibility of the constructive system for the realization of building façade, through the experimental tests and component life cycle analysis, is verified. The components and materials properties both in laboratory conditions and after different types of ageing conditions (durability) are tested. The interaction between building components and environment, from the production to ultimate disposal (LCA - Life Cycle Assessment) are analysed. The methods used were mostly of the experimental type. The material mechanical properties both in environmental conditions and in different types of ageing conditions were analysed, such as continuous condensation (ISO 6270-2) and UV irradiation (ASTM D904–99). Additional test with combined artificial ageing (climatic chamber and exposure to UV radiation - Tcc+Tuv – and the other way around - Tuv+Tcc) were tested. The numerical and analytical studies were carried out, with the objective to check and validate the results obtained through experimental tests. The main outcome was the validation of the patents basic ideas, which is a key point in the industrialization process of the construction elements (Structural Member). The aim of this work is to demonstrate the feasibility of the use of pultruded Glass Fiber Reinforced Polymers (GFRP) profiles, adhesively joined with other materials (i.e. steel), in the construction sector. The objective is both to reduce the GFRP profiles deformation under loading conditions, and to avoid the brittle fractures that could occur in bolted joints. In the building engineering field, in fact, these issues (deformations and brittle fractures) prevent the use of pultruded materials. In the research activity, the possibility to adhesively join a steel laminate on the pultruded profile mullion for curtain walls was verified. The containment of the deformations and the prevention of brittle fractures in the bolted joint were checked, in order to verify the pultruded curtain wall feasibility, both constructively and for its structural and energy performances. Experimental results, in fact, demonstrated that the use of GFRP profiles, bonded with structural adhesives and combined with steel, is successful on curtain walls, even when they are exposed to adverse environmental conditions. The feasibility of the curtain wall implementation with high performance is verified.
22-mar-2018
L’obiettivo del presente lavoro è verificare l’applicabilità di materiali innovativi, quali compositi (GFRP - Glass Fibre Reinforced Polymer) e colle strutturali, per la realizzazione di facciate continue ad alte prestazioni meccaniche e termiche e a basso impatto ambientale. Tale obiettivo è stato verificato anche tramite l’applicazione del principio della “Semplificazione tecnologica” che rappresenta il filo conduttore alla base dello studio e delle sperimentazioni svolte dal gruppo di ricerca, coordinato dal Prof. P.Munafò, che ha sviluppato il brevetto “Sistema per la realizzazione di facciate di edifici” (n.102015000087569) di cui il Professore è inventore. Con tale filosofia di approccio è possibile realizzare componenti edilizi altamente prestazionali e semplici nella loro concezione essendo costituiti con un numero limitato di pezzi implicando così un minor consumo di energia nella produzione, assemblaggio, manutenzione e smaltimento del prodotto, classificandolo quindi come eco-sostenibile. In questa tesi viene verificata la fattibilità di un sistema costruttivo per la realizzazione di facciate continue per edifici studiando preventivamente, con test sperimentali e analisi sul ciclo di vita dei componenti, le prestazioni meccaniche dei profili in GFRP e degli adesivi strutturali in condizioni di invecchiamento accelerato (durabilità) e non, e l’interazione del componente edilizio con l’ambiente, dalla produzione alla dismissione finale (LCA - Life Cycle Assessment). I metodi principalmente usati in questo studio sono di tipo sperimentale al fine di testare le proprietà meccaniche dei materiali, in condizioni ambientali e dopo invecchiamento (accelerato in camera climatica ad elevata umidità e temperatura (ISO 6270-2) e sotto esposizione ai raggi UV (ASTM D904–99)). In seguito ai singoli test di invecchiamento precedentemente citati, sono stati condotti ulteriori sperimentazioni riguardanti il trattamento di campioni a condizioni di invecchiamento combinato (camera climatica ed esposizione ai raggi UV - Tcc+Tuv - e viceversa - Tuv+Tcc -). Al fine di validare i risultati ottenuti dalle sperimentazioni effettuate sono stati eseguiti test numerici e analitici. Il risultato più significativo è dato proprio dalla validazione dell’idea brevettuale dimostrando la possibilità di industrializzare componenti (facciate continue) che utilizzano tale materiale composito (pultruso - GFRP), mediante l’accoppiamento a materiali come l’acciaio che possono conferire al componente alte prestazioni meccaniche, soprattutto per quanto riguarda il contenimento delle deformazioni sotto carico. Le soluzioni tecniche studiate inoltre evitano il problema della rottura fragile delle giunzioni bullonate che è uno dei problemi che riguardano le giunzioni di questo tipo su profili in pultruso. La deformabilità e la rottura fragile delle giunzioni bullonate dei profili in pultruso ne hanno limitato l’utilizzo nel settore dell’ingegneria edile per la realizzazione di facciate continue specie di grandi dimensioni. A tal fine l’attività di ricerca è stata prevalentemente incentrata a verificare la possibilità di inserire nei montati in pultruso di tali facciate, una lamina d’acciaio incollata per contenere la deformazione e per migliorare la qualità della giunzione bullonata in modo da evitare rotture di tipo fragile raggiunto il carico di collasso. Le risultanze dei test sperimentali condotti dimostrano le buone performance del sistema ibrido GFRP-acciaio anche in seguito all’esposizione a differenti condizioni di invecchiamento artificiale e verificano la fattibilità di realizzazione di una facciata continua ad alte prestazioni meccaniche e termiche.
Glass Fibre Reinforced Polymer; Structural adhesives; Curtain wall; Technological Simplification
File in questo prodotto:
File Dimensione Formato  
Tesi_Terlizzi.pdf

accesso aperto

Descrizione: Tesi_Terlizzi.pdf
Tipologia: Tesi di dottorato
Licenza d'uso: Creative commons
Dimensione 9.49 MB
Formato Adobe PDF
9.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/252565
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact