This thesis addresses a series of research activities spanning the different spatial and temporal aspects of energy efficiency, comfort and climate change resilience throughout diverse scales of the built environment. The first macro-topic deals with the design of optimized control logics of specific building components, notably: electric radiators (on-off, PID and fuzzy controllers), windows (indoor air quality and thermal comfort driven adaptive comfort algorithm), sunspaces (smartly controlled mechanical ventilation) and fan coil units (fuzzy and model-predictive logics to counteract overabundant solar gains). The second macro-topic focuses on how climate change phenomena impinge on the energetic and ergonomic performance of buildings and cities. Firstly, the outcomes of the four-month experience in Europe, as a member of the 2015 WISBA edition (Wienerberger Sustainable Building Academy), are presented: the low-tech concept of Building 2226 (Austria) was tested in the frame of the actual climatic conditions and in view of the expected climate change to come in 2050. A re-design strategy was developed to enhance its resilience. Secondly, the results of one of the Urban Heat Island (UHI) mitigation projects run during the last year in collaboration with the University of New South Wales (Sydney, Australia) are illustrated and discussed: the borderline case of a tropical city (Darwin, Northern Territory) was monitored, analysed, modelled and tackled by developing customized counterbalance measures. Indeed, the overarching aim of the whole research path is to provide and field-test smart, optimized and mitigation-oriented solutions towards more efficient and liveable indoor and outdoor spaces. Special focus was given to the collection of on-site validated data, by planning robust monitoring campaigns and properly selecting the sensor networks.
Questa tesi riporta una serie di attività di ricerca che indagano, sotto diversi aspetti spaziali e temporali, i temi di efficienza energetica, comfort e resilienza al cambiamento climatico relativi al settore edilizio. Il primo macroblocco tematico è incentrato sul design di logiche di controllo ottimizzate a servizio di svariati componenti edilizi, nella fattispecie: radiatori elettrici (logiche on-off, PID e fuzzy), finestre (algoritmi di comfort adattivi basati su qualità dell’aria e comfort termico), serre solari (ventilazione meccanica controllata a logica termoigrometrica) e ventilconvettori (modelli fuzzy e predittivi per la gestione degli apporti solari). Il secondo macroblocco indaga le ripercussioni del cambiamento climatico sulla performance energetica ed ergonomica dell’ambiente costruito, partendo dal singolo edificio fino a coinvolgere fenomenologie su scala urbana. Vengono dapprima presentati i risultati dello studio di quattro mesi condotto su territorio europeo nell’ambito dell’edizione 2015 del WISBA (Wienerberger Sustainable Building Academy): la resilienza di un edificio low-tech (rappresentato dal Building 2226, Austria) è investigata nel contesto delle condizioni climatiche attese nel 2050 per approdare ad una strategia di redesign anti obsolescenza prematura. In seguito, sono esposti e discussi i risultati di uno dei progetti di mitigazione dell’effetto isola di calore urbana, condotti in collaborazione con la University of New South Wales (Sydney, Australia): il caso limite rappresentato da una capitale tropicale (Darwin) è oggetto di monitoraggio, analisi, modellazione e sviluppo di contromisure specifiche. Nel complesso, l’intero percorso di ricerca mira a definire e testare su campo soluzioni ad elevato potenziale di risparmio energetico e comfort (indoor ed outdoor) tramite logiche smart e tecnologie orientate alla mitigazione dei fenomeni di surriscaldamento globale. Comun denominatore è l’inclusione di una robusta fase sperimentale.
Towards energy efficient, comfortable and climate resilient built environment: Development and application of smart, optimized and mitigation-oriented solutions / Ulpiani, Giulia. - (2018 Mar 02).
Towards energy efficient, comfortable and climate resilient built environment: Development and application of smart, optimized and mitigation-oriented solutions
ULPIANI, GIULIA
2018-03-02
Abstract
This thesis addresses a series of research activities spanning the different spatial and temporal aspects of energy efficiency, comfort and climate change resilience throughout diverse scales of the built environment. The first macro-topic deals with the design of optimized control logics of specific building components, notably: electric radiators (on-off, PID and fuzzy controllers), windows (indoor air quality and thermal comfort driven adaptive comfort algorithm), sunspaces (smartly controlled mechanical ventilation) and fan coil units (fuzzy and model-predictive logics to counteract overabundant solar gains). The second macro-topic focuses on how climate change phenomena impinge on the energetic and ergonomic performance of buildings and cities. Firstly, the outcomes of the four-month experience in Europe, as a member of the 2015 WISBA edition (Wienerberger Sustainable Building Academy), are presented: the low-tech concept of Building 2226 (Austria) was tested in the frame of the actual climatic conditions and in view of the expected climate change to come in 2050. A re-design strategy was developed to enhance its resilience. Secondly, the results of one of the Urban Heat Island (UHI) mitigation projects run during the last year in collaboration with the University of New South Wales (Sydney, Australia) are illustrated and discussed: the borderline case of a tropical city (Darwin, Northern Territory) was monitored, analysed, modelled and tackled by developing customized counterbalance measures. Indeed, the overarching aim of the whole research path is to provide and field-test smart, optimized and mitigation-oriented solutions towards more efficient and liveable indoor and outdoor spaces. Special focus was given to the collection of on-site validated data, by planning robust monitoring campaigns and properly selecting the sensor networks.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Ulpiani.pdf
Open Access dal 04/09/2019
Descrizione: Tesi_Ulpiani.pdf
Tipologia:
Tesi di dottorato
Licenza d'uso:
Creative commons
Dimensione
266.07 MB
Formato
Adobe PDF
|
266.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.