We study the following strongly nonlinear differential equation (a(t,x(t))Phi(x'(t)))'= f(t,x(t),x'(t)) a.e. in [0,T] subjected to various boundary conditions including, as particular cases, the classical Dirichlet, periodic, Neumann and Sturm-Liouville problems. We adopt the method of lower and upper solutions, requiring a weak form of a Wintner-Nagumo growth condition.

Boundary value problems for strongly nonlinear equations under a Wintner-Nagumo growth condition / Marcelli, C; Papalini, F.. - In: BOUNDARY VALUE PROBLEMS. - ISSN 1687-2770. - ELETTRONICO. - 2017:183:(2017), pp. 1-15. [10.1186/s13661-017-0913-7]

Boundary value problems for strongly nonlinear equations under a Wintner-Nagumo growth condition

Marcelli, c;Papalini, F.
2017-01-01

Abstract

We study the following strongly nonlinear differential equation (a(t,x(t))Phi(x'(t)))'= f(t,x(t),x'(t)) a.e. in [0,T] subjected to various boundary conditions including, as particular cases, the classical Dirichlet, periodic, Neumann and Sturm-Liouville problems. We adopt the method of lower and upper solutions, requiring a weak form of a Wintner-Nagumo growth condition.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/252301
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact