The estimation of Intrinsic Dimension (ID) of data is particularly crucial in the unsupervised learning of nonlinear time series, as it essentially represents the minimum number of parameters to describe the data. The aim of this paper is to give both a new theoretical contribution and a machine learning algorithm that can be used for the ID estimation of time series. Several experimental results validate the proposed approach.

A machine learning method to determine intrinsic dimension of time series data / Turchetti, Claudio; Falaschetti, Laura. - (2017), pp. 303-307. (Intervento presentato al convegno 2017 5th IEEE Global Conference on Signal and Information Processing, GlobalSIP 2017 tenutosi a Montreal, QC, Canada, Canada nel 14-16 November 2017) [10.1109/GlobalSIP.2017.8308653].

A machine learning method to determine intrinsic dimension of time series data

Turchetti, Claudio;Falaschetti, Laura
2017-01-01

Abstract

The estimation of Intrinsic Dimension (ID) of data is particularly crucial in the unsupervised learning of nonlinear time series, as it essentially represents the minimum number of parameters to describe the data. The aim of this paper is to give both a new theoretical contribution and a machine learning algorithm that can be used for the ID estimation of time series. Several experimental results validate the proposed approach.
2017
978-1-5090-5990-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/251876
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact